## 開発成果報告書

# 放射能分析用

# 土壤認証標準物質

JSAC 0471 JSAC 0472 JSAC 0473

## 2012年5月29日

## 2012年10月15日改1

(認証値の修正, 添付資料 11 削除, 添付資料 12,13 追加)

## 2013年12月17日改2

(添付資料14「均質性に対する試料充てん量の影響」追加)



目 次

|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | 貝  |  |  |  |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----|--|--|--|
| 1.  | はじ    | じめし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                 | 1  |  |  |  |
| 2.  | 開発の経緯 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |    |  |  |  |
| 3.  | 計量    | ∎ ト 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | レーサビリティ                           | 2  |  |  |  |
| 4.  | 試料    | り おうちょう おうちょう おうしょう おうしん いちょう おうしん おうしん しんしょう いい おいしょう しんしょう しんしょう しんしょう いんしょう いんしょ いんしょ いんしょ いんしょ いんしょ いんしょ いんしょ いんしょ |                                   | 3  |  |  |  |
| 5.  | 均質    | <b>賃性</b> 書                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 平価                                | 6  |  |  |  |
| 6.  | 報겉    | 「結」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 果及び特性値の決定                         | 9  |  |  |  |
| 7.  | 不确    | 雀かる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | さの算出                              | 10 |  |  |  |
| 8.  | 標準    | 制物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 質の利用                              | 14 |  |  |  |
| 9.  | 認訂    | E書                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 14 |  |  |  |
| 10. | 結請    | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 14 |  |  |  |
| 添付資 | 野料    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :参加試験所が使用した参照標準の概略図               | 16 |  |  |  |
| 添付資 | 野料    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :調製作業                             | 17 |  |  |  |
| 添付資 | 野料    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 共同実験参加試験所の測定条件など                | 22 |  |  |  |
| 添付資 | 野料    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 共同実験参加試験所の測定条件など(Lab 7追記)       | 32 |  |  |  |
| 添付資 | 野料    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 共同実験参加試験所の測定条件など(Lab 14追記)      | 35 |  |  |  |
| 添付資 | 野料    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :均質性試験など複数の報告値を含めた測定値一覧表とバーチャート   | 42 |  |  |  |
| 添付資 | 野料    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :報告されたγ線スペクトル例                    | 44 |  |  |  |
| 添付資 | 野料    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 計算に基づく方法(LabSOCS)               | 53 |  |  |  |
| 添付資 | 野料    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 検出効率の校正における関数フイッティングの不確かさ       | 54 |  |  |  |
| 添付資 | 野料    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 減弱係数,試料密度(比重)等                  | 57 |  |  |  |
| 添付資 | 野料    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :認証書(初版削除)                        | なし |  |  |  |
| 添付資 | 野料    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :土壤標準物質中の90Sr,Pu(Pu同位体,同位体比)の共同分析 | 59 |  |  |  |
| 添付資 | 野料    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :認証書(改1)                          | 61 |  |  |  |
| 添付資 | 野料    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 均質性に対する試料充てん量の影響                | 66 |  |  |  |

百

## 開発成果報告書

# 放射能分析用 土壤認証標準物質 JSAC 0471~0473

1. はじめに

東日本大震災にともなう福島第一原子力発電所事故により発生した放射性物質による環 境汚染の広がりは、国民生活の様々な側面に大きな影響を与えている. 土壌表面に降下し た放射性物質は、表流水の移動などに伴って分布状態を変え、住環境における外部被ばく 線量に影響している. また、農地やその周辺に降下した放射性物質は、農作物などに取り 込まれて国民の内部被ばく線量の上昇を招く可能性が指摘されている. 土壌などの環境試 料や食品中の放射性物質の量を正確に、かつ、迅速に測定する技術の開発は、放射能計測 分野に求められている火急の使命である. 特に食品分析については基準値がこれまでの暫 定基準値から大幅に引き下げになり、より微弱な放射能を定量することが社会的なニーズ となっている.

分析値の信頼性を確保するには、測定対象物質の分析値を、類似の組成を持ち計量トレ ーサビリティが取れた標準物質の分析値と比較することが必要である.

日本分析化学会では、第13回標準物質委員会(2011-05-13)の議事 5.6 ②放射線測定用標 準物質について議論がなされた.このなかで、我が国の危急の社会的ニーズに対応するため 学会内に設置された震災対応 WG の方針を踏まえ、原発事故対応支援を考慮した放射能測定 用標準物質の作製の提案がなされた.試料の採取や均質化等に課題はあったが、作製の検討 を開始することが承認され、土壌、食品等について検討を進めることとなった.探索的に試 料の採取と均質性試験が行われ、標準物質作製の見通しが得られたため、放射能標準物質作 製委員会が結成され 2012-01-13 に第1回会議が開催された.その後数回の委員会において 均質性の評価、測定方法の検討、共同実験の企画実行、その結果の評価が行われ、12 試験 所の結果をもとに次の放射能濃度認証値が決定された.

> セシウム 134 : (85.3±5.9) Bq/kg セシウム 137 : (115±8) Bq/kg カリウム 40 : (396±25) Bq/kg

本報告は、計画される標準物質の内の一つで、土壌認証標準物質に関する成果をまとめたものである.

2. 開発の経緯

標準物質委員会では渋川委員より震災対応 WG の方針を踏まえ,原発事故対応支援を考慮した放射能測定用標準物質の作製の提案がなされ,平井委員が土壌と玄米について調達を行った.環境テクノス(株)にて調製作業を行い,エヌエス環境(株)及び東京都市大学にて均質性を調査した.

測定方法としては,我が国における放射能分析の代表的な指針である"平成4年改訂文部科学省 放射能測定シリーズ7「ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー」"によることにした.

共同実験に参加した機関のリストを表1に示した.

| <b>±</b> 1 | ±→11→11→11→11→11→11→11→11→11→11→11→11→11 | 7 | 1 | (順子三)    |
|------------|------------------------------------------|---|---|----------|
| オマー        |                                          |   | r | (川県/NIP) |

| 東京都市大学工学部                  |
|----------------------------|
| 東京都市大学原子力研究所               |
| 明治大学理工学部                   |
| 京都大学原子炉実験所                 |
| (大共)高エネルギー加速器研究機構放射線科学センター |
| (財)日本分析センター                |
| (公社)日本アイソトープ協会             |
| (独)放射線医学総合研究所              |
| (独)産業技術総合研究所               |
| (独)日本原子力研究開発機構             |
| エヌエス環境株式会社                 |
| 株式会社環境総合テクノス               |
|                            |

3. 計量トレーサビリティ

表2に参加試験所が用いた参照標準とその合成標準不確かさを示した.

表2 参加試験所が用いた参照標準とその合成標準不確かさ

| Lab<br>番号 | 参照標準                                           | 検出効率校正の<br>標準不確かさ(%)                                                                                          |
|-----------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1         | 日本アイソトープ協会製放射能標準ガ<br>ンマ体積線源 MX033U8PP          | 2.35 (該当エネルギー範囲で)                                                                                             |
| 2         | Cs-134, Cs-137:IAEA 444<br>K-40:U8 容器に KCl を充填 | 2.86 (Cs-134)<br>2.04 (Cs-137)<br>K-40については核データの不確か<br>さと計数誤差を合成した。<br>1.0 (K-40)                             |
| 3         | 電離箱で校正した放射能標準液(塩酸<br>酸性)で効率決定                  | 電離箱による校正,検出効率と検<br>出器安定性の不確かさを合成し<br>た.K-40については内挿の不確か<br>さも合成.<br>1.16(Cs-134)<br>1.34(Cs-137)<br>1.67(K-40) |

| 4  | エネルギー依存性 : AEA<br>Technology plc QCD1 2956QB<br>測定試料形状依存性 : 日本アイソト<br>ープ協会製 CS-050 9903                                                                                          | 参照標準と校正式フイッティング<br>の不確かさを合成した.<br>1.61                                                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 5  | U8 容器に 9 核種を含む水溶液を充填し<br>た体積標準線源                                                                                                                                                 | 体積標準線源として該当エネルギ<br>ー範囲で1.0以下<br>ピーク効率の校正値として,<br>1.62 (Cs-134)<br>1.33 (Cs-137)<br>1.49 (K-40) |
| 6  | 日本アイソトープ協会製放射能標準ガ<br>ンマ体積線源 MX033U8PP                                                                                                                                            | 2.35 (該当エネルギー範囲で)                                                                              |
| 7  | LabSOCS*                                                                                                                                                                         | 4.3                                                                                            |
| 8  | 日本アイソトープ協会製放射能標準ガ<br>ンマ体積線源 MX033U8PP                                                                                                                                            | 2.35 (該当エネルギー範囲で)                                                                              |
| 10 | 日本アイソトープ協会製放射能標準ガ<br>ンマ体積線源 MX033U8PP                                                                                                                                            | 2.35 (該当エネルギー範囲で)                                                                              |
| 11 | 日本アイソトープ協会製放射能標準ガ<br>ンマ体積線源 MX033U8PP                                                                                                                                            | 2.5 (該当エネルギー範囲で)                                                                               |
| 12 | 日本アイソトープ協会製放射能標準ガ<br>ンマ体積線源 MX033U8PP                                                                                                                                            | 2.35 (該当エネルギー範囲で)                                                                              |
| 14 | Eu-152 線源(JAERI Eu427):不確かさ<br>4%(3σ)<br>混合核種γ線源(DKD 製 GF-ML-M-7601<br>S/N:1390-40):不確かさ2.9%(2σ)<br>Cs-134あるいはCs-137を含む溶液をそ<br>れぞれ土壌と混合し,2つの線源<br>(Cs-134標準線源,Cs-137標準線源)<br>を作製 | ピーク効率の校正値として,<br>2.06 (Cs-134)<br>1.67 (Cs-137)<br>2.5 (K-40)                                  |

\* Canberra 社製 LabSOCS (Laboratory Sourceless Objecet Calibration Software)

ピーク効率の校正の標準不確かさは、特に記述がない場合は、報告された場合はそのま ま、報告されていない場合は用いた参照標準の拡張不確かさを2で割った値を用いた. Lab8 については一般的に推定される値である.詳細は7節および添付資料3を参照のこと. 添付資料1に、共同実験における放射能測定トレーサビリティの概念を、参考のため図示 した.

#### 4. 試料調製

(1) 試料の粉砕及び篩い分け

Cs-134 と Cs-137 を合わせて約 200 Bq/kg (12.7 kg) と 120 Bq/kg (72.8 kg) が準備さ れ, それぞれの試料について, 4 kg 程度に分割しながら熱風循環式定温乾燥器にて 35℃, 1 日 (24 時間) 乾燥した. その後, アルミナボールミルを用いて 3 時間粉砕した. これを 篩分けし, 粒径 (63 - 250)µm のものを選別した. 粒径 250µm 以上の試料は, 粉砕・ 篩いを数回繰り返した.粉砕,篩い分けの後,全試料を拡翼式混合機を用いて混合し,続いてV型混合機で再混合し,試料の均質性を図った.このようにして約56kgの候補試料 を得た.

なお,粉砕,篩い分けについては,試料の一部を用いて事前に各種条件を求めるための 検討が行われた(添付資料2参照).

(2) 試料瓶詰め

試料を U8 容器に入れた後,中蓋とクッションボールを入れ(この時クッションボールは 容器の上面より,やや上にする.),上蓋を閉めて試料を締め付けた(試料が中蓋の上にい かないよう,十分注意する.).上蓋を薬瓶の要領で透明ビニールテープ止めする.充填し た質量と瓶の本数は次の通りである.瓶詰め順で試料には試料番号(1~250+予備1 ~5,または 1~50)ラベルを貼付した.

| 充てん高さ(mm) | 充てん質量(g) | 瓶数(本) | 予備本数 |
|-----------|----------|-------|------|
| 50        | 135      | 250   | 5    |
| 30        | 80       | 50    |      |
| 10        | 30       | 50    |      |





瓶詰め写真(左から 10 mm, 30 mm, 50 mm)

(3) 均質性試験

一括混合後,3個の容器(No.1, No.2, No.3, ステンレス製,外形,高さ360mm) に保管した試料から下記の図のように6点から均質性確認用試料を採取した.それぞれ試 料番号を1-1,1-2,2-1,2-2,3-1,3-2とした.各試料 Mn,Cu,Znの 分析を2回ずつ行った.分析結果を表3に示す.結果よりMn,Cu,Zn成分の均質性に問題 は無いと考えられた.



分析方法:

各試料約 0.5gを分取し,硝酸,フッ化水素酸,過塩素酸にて酸分解を行った.分解,蒸 発乾固後の試料を(1+1)塩酸 5 ml に溶解後,50 全量フラスコにて定容した. Cu と Zn に ついてはこの溶液を測定溶液とした. Mn はさらに 5 倍希釈(50 ml 定容)したものを測定溶 液とした.これらの溶液の ICP-AES 測定を行った.

分析装置 ICP-AES (型式: ICPS-8100) (㈱島津製作所製 測定波長: Mn 257.610 nm, Cu 327.396 nm, Zn 213.856 nm

| 成分→                                 | Mn     |             | Cu    |         | Zn    |         |  |  |
|-------------------------------------|--------|-------------|-------|---------|-------|---------|--|--|
| 分析方法→                               |        | ICP 発光分光分析法 |       |         |       |         |  |  |
| 位置番号↓                               | 測定1    | 測定 2        | 測定1   | 測定 2    | 測定1   | 測定 2    |  |  |
| 1-1                                 | 762.06 | 756.54      | 33.11 | 35.61   | 75.91 | 76.12   |  |  |
| 1-2                                 | 789.56 | 761.58      | 32.09 | 32.07   | 74.30 | 74.71   |  |  |
| 2-1                                 | 748.28 | 763.84      | 33.14 | 33.26   | 77.09 | 75.17   |  |  |
| 2-2                                 | 759.74 | 744.45      | 35.13 | 33.82   | 79.40 | 76.37   |  |  |
| 3-1                                 | 762.14 | 752.26      | 33.52 | 31.71   | 76.48 | 75.26   |  |  |
| 3-2                                 | 769.69 | 763.04      | 33.56 | 32.74   | 77.52 | 75.11   |  |  |
| Average                             | 761.10 |             | 33.31 |         | 76.12 |         |  |  |
|                                     | S      | RSD(CV)     | S     | RSD(CV) | S     | RSD(CV) |  |  |
| $s_{\rm r}$ (併行標準偏差) <sup>注</sup>   | 10.92  | 1.43%       | 1.00  | 2.99%   | 1.30  | 1.71%   |  |  |
| $s_{\rm bcr}$ (合成標準偏差) <sup>注</sup> | 11.49  | 1.51%       | 1.18  | 3.54%   | 1.42  | 1.87%   |  |  |
| s <sub>bb</sub> (瓶間標準偏差)注           | 3.57   | 0.47%       | 0.63  | 1.90%   | 0.57  | 0.74%   |  |  |

表3 化学分析による均質性試験結果(ug/g)

<sup>注</sup>: *s*<sub>r</sub>, *s*<sub>bb</sub>については5. 均質性評価を参照. *s*<sub>ber</sub>は両者の合成標準偏差である.

(4) 含水率測定

底質調査方法(昭和63年環境庁環水管127号)に準じて乾燥減量(水分)を測定した. 試料を約10gずつ蒸発皿に秤取り,厚さが10mm以下になるように拡げて質量を測定した(a:湿試料). これを105℃で2時間,定温乾燥機で乾燥し,さらに乾燥後デシケーターに移し,約40分間放冷した. 放冷後デシケーターから蒸発皿を取り出し,速やかに質量測定した(b:乾燥試料). この試料量から下記の式を用いて含水率を算出した.

含水率(%)=(a-b)/a×100

| 表 4 | 含水率測定結果 |
|-----|---------|
|     |         |

| 蒸発皿 | 風袋     | ⇒++ 本1  | 試料量    | 乾燥後質   | 乾燥後試料量 | 減量    | 水分    |
|-----|--------|---------|--------|--------|--------|-------|-------|
| No. | g      | 武州      | (a) g  | 量 g    | (b) g  | g     | (%)   |
| 27  | 47.514 | No. 1–1 | 10.016 | 57.380 | 9.866  | 0.150 | 1.498 |
| 32  | 45.894 | No. 1-2 | 10.018 | 55.766 | 9.872  | 0.146 | 1.457 |
| 37  | 45.234 | No. 2-1 | 10.028 | 55.114 | 9.880  | 0.148 | 1.476 |
| 61  | 46.302 | No. 2-2 | 10.093 | 56.245 | 9.943  | 0.150 | 1.486 |
| 87  | 47.725 | No. 3-1 | 10.047 | 57.627 | 9.902  | 0.145 | 1.443 |
| 88  | 45.197 | No. 3-2 | 10.124 | 55.170 | 9.973  | 0.151 | 1.492 |

| 平均值   | 1.48  |
|-------|-------|
| 標準偏差  | 0.02  |
| RSD % | 1.43% |

5. 均質性評価

5.1 放射能測定による均質性試験

評価用試料は、全試料を U8 容器に詰めた後、試料調製時に化学分析を実施した試料とほぼ同位置から 2 本ずつ、計 12 本分の試料を選んで、それぞれの試料番号を1-1-1、1-1-2、1-2-1 ~ 3-2-2とし、放射能測定均質性試験用試料とした.

放射能測定は2試験所で実施された.

- 5.2 試験結果
- (1) エヌエス環境株式会社による均質性試験
  - ・測定時間は4時間に固定し、2月8日から2月26日にかけて測定した.
- ・Cs-134の放射能は6本のγ線ピークの加重平均で求められた.用いたピークのエネル ギー値は563.23,569.32,604.7,795.85,801.93,1365.15 keV である.

| 試料番号  | 放射能<br>Cs-134<br>(Ba/kg) | 計数誤差<br>(Bq/kg) | 放射能<br>Cs-137<br>(Ba/kg) | 計数誤差<br>(Bq/kg) | 放射能<br>K-40<br>(Ba/kg) | 計数誤<br>差 |
|-------|--------------------------|-----------------|--------------------------|-----------------|------------------------|----------|
| 1 1 1 | (Dq/Rg)                  | 1 00            | (DQ/Kg)                  | 0.00            | (DQ/Kg)                | (DQ/Kg)  |
| 1-1-1 | 84.24                    | 1.38            | 113.78                   | 2.30            | 453.6                  | 18.79    |
| 1-1-2 | 81.58                    | 1.34            | 108.17                   | 2.22            | 441.7                  | 18.48    |
| 1-2-1 | 82.97                    | 1.33            | 109.24                   | 2.22            | 426.7                  | 15.15    |
| 1-2-2 | 84.01                    | 1.37            | 119.47                   | 2.36            | 408.8                  | 17.89    |
| 2-1-1 | 83.04                    | 1.37            | 111.96                   | 2.30            | 444.7                  | 18.80    |
| 2-1-2 | 82.82                    | 1.33            | 111.37                   | 2.27            | 433.7                  | 18.12    |
| 2-2-1 | 82.65                    | 1.34            | 110.53                   | 2.23            | 384.3                  | 17.09    |
| 2-2-2 | 84.50                    | 1.38            | 117.11                   | 2.34            | 447.8                  | 18.80    |
| 3-1-1 | 82.27                    | 1.35            | 117.08                   | 2.33            | 478.0                  | 19.36    |
| 3-1-2 | 82.84                    | 1.34            | 115.26                   | 2.30            | 431.2                  | 17.83    |
| 3-2-1 | 83.33                    | 1.36            | 116.97                   | 2.31            | 422.3                  | 18.20    |
| 3-2-2 | 82.05                    | 1.37            | 113.75                   | 2.32            | 427.7                  | 18.34    |
| 平均值   | 83.02                    | 1.36            | 113.73                   | 2.29            | 433.4                  | 18.07    |
| 標準偏差  | 0.88                     |                 | 3.55                     |                 | 23.4                   |          |

表5 Cs-134, Cs-137, K-40 測定結果

上記の均質性試験について, 試料間と繰り返し測定を不確かさ要因と考え, JIS Q 0035 7.8 項の一元配置分散分析による瓶間均質性試験の手順を用いて試料間不均質性の不確か さを算出した.

計算手順の概要は以下のとおりである.

分散分析により瓶間均質性標準偏差(*s*<sub>bb</sub>)は次式で表される.

$$s_{bb}^{2} = \frac{MS_{\text{among}} - MS_{\text{within}}}{n} \tag{1}$$

ここで, nは繰返し測定回数(=2), MS は平均平方(ANOVA)で, among はグループ間 (ここでは, 瓶間に対応する), within はグループ内(繰返しに対応)を意味する. 規格では, 測定方法の併行精度が不十分な場合, 次式に留意することが求められる.

$$\frac{MS_{\text{among}} - MS_{\text{within}}}{n} \le u_{bb}^2 \le s_{bb}^2 + \frac{s_r^2}{n}$$
(2)

ここで、 $u_{bb}$ は試料間の不均質性による標準不確かさである.また併行精度( $s_r$ )の分散は次のように表せる.

$$s_{r}^{2} = MS_{\text{within}} \tag{3}$$

通常,不均質性による不確かさとしては,(2)式の右辺が用いられるが,併行精度が不十 分な場合には,その値が往々にして負の値を持つ.このために,不確かさの下限値として 次のような併行精度を用いた評価が行われる. *v*は自由度である.

$$u_{bb}^{*} = \sqrt{\frac{MS_{\text{within}}}{n}} \sqrt[4]{\frac{2}{\nu_{MS_{\text{within}}}}}$$
(4)

以上から、u<sub>bb</sub>を不均質性不確かさとして、次のように決定する.

$$u_{bb} = \begin{cases} \sqrt{s_{bb}^{2} + \frac{s_{r}^{2}}{n}} & (s_{bb}^{2} + \frac{s_{r}^{2}}{n} \ge u_{bb}^{*2} \mathcal{O}$$
(5)  
 $u_{bb}^{*} & ( 上 \mathcal{O}$ 場合以外) (5)

3種の核種について、計算結果を表6にまとめた.

| 表 6 | 均質性試験の分散分析結果 |
|-----|--------------|
| 10  |              |

|                        | Cs-134           | Cs-137   | K-40                |
|------------------------|------------------|----------|---------------------|
| s <sub>bb</sub>        | $-0.6255$ $^{注}$ | -1.971 注 | -4.924 <sup>注</sup> |
| S <sub>r</sub>         | 1.0641           | 4.015    | 23.87               |
| $s_{bb}^2 + s_r^2 / n$ | 0.1750           | 4.174    | 260.5               |
| $u_{bb}^{*}$           | 0.5718           | 2.157    | 12.82               |
| u <sub>bb</sub>        | 0. 5718          | 2.157    | 16.14               |
| u <sub>bb</sub> (%)    | 0.69 %           | 1.90 %   | 3.71 %              |

<sup>注</sup> : (1)式の右辺が負の場合に、その絶対値の平方根に負号を付けて $s_{bb}$ としている.

計算結果では、3種の核種でsbbは負となり、併行標準偏差に比べて不均質性は大きくな

いことを示唆している.特に K-40 の $u_{bb}$  値は、大きな $s_r$  を反映しているもので、繰り返し

の不確かさが主要因と考えられる.これは,表5における K-40の計数誤差が他の核種に比べてかなり大きいことに対応しており,この数値をそのまま不確かさとすると,過大評価になることが想定される.

(2) 東京都市大学原子力研究所による均質性試験

(1)の測定後6試料について測定された.測定時間は10~18時間である.測定数が小 さいため分散分析ではなく通常の統計計算を行った. Cs-134の強度は604.44 keVのピー クから求めた. K-40の測定では,(1)の結果と比べて測定時間が長いがバックグランドの 強度が大きかったために,計数誤差は表5と同等程度になっている.

| 試料番号              | 放射能<br>Cs-134<br>(Bq/kg) | 計数誤差<br>(Bq/kg) | 放射能<br>Cs-137<br>(Bq/kg) | 計数誤差<br>(Bq/kg) | 放射能<br>K-40<br>(Bq/kg) | 計数誤差<br>(Bq/kg) |
|-------------------|--------------------------|-----------------|--------------------------|-----------------|------------------------|-----------------|
| 1-1-1             | 82.44                    | 1.20            | 114.53                   | 1.52            | 429.0                  | 16.4            |
| 1-2-2             | 80.64                    | 1.18            | 116.47                   | 1.58            | 428.6                  | 14.5            |
| 2-1-1             | 83.27                    | 1.20            | 116.52                   | 1.57            | 410.0                  | 15.6            |
| 2-2-2             | 83.95                    | 1.19            | 118.71                   | 1.59            | 439.8                  | 15.4            |
| 3-1-1             | 79.83                    | 1.14            | 116.92                   | 1.57            | 415.9                  | 17.5            |
| 3-2-2             | 82.88                    | 1.17            | 117.88                   | 1.58            | 411.5                  | 17.4            |
| 平均值               | 82.17                    | 1.18            | 116.84                   | 1.57            | 422.46                 | 16.14           |
| 標準偏差              | 1.60                     |                 | 1.42                     |                 | 11.80                  |                 |
| RSD (%)           | 1.95%                    |                 | 1.22%                    |                 | 2.79%                  |                 |
| 68.27%<br>信頼限界(%) | 2.16%                    |                 | 1.35%                    |                 | 3.10%                  |                 |

表7 測定された放射能と計数誤差

均質性試験に供した 6 本について各 1 回測定を行ったために 6 個のデータから標準偏差 を求めた.自由度を考慮し t分布を用いて 68.27%信頼限界の値を標準不確かさの候補とし た.ここでも K-40 については計数誤差が標準偏差の主成分で,これを不均質性とすると過 大評価になると考えられる.

(3) 不均質性に基づく不確かさの推定

Cs-134, Cs-137の不均質性として、2試験所の値を平均して共通に1.6%とした.

K-40の不均質性について、 u<sub>bb</sub>や平均値の標準偏差を用いると計数誤差により過大評価

と考えられること、及び K は土壌の成分そのものであるため他の核種と比較しても同等か、 あるいはより小さい不均質性が予測されることから、化学分析による成分分析の不均質性 の平均値と GUM(計測における不確かさの表現のガイド)の H.5.2.5 節に記述される平均 値の推定標準偏差を比較して大きい方を K-40 の不均質性として用いることにした.

表3の化学分析による3成分の sbb を平均すると 1.04 %, 表5のデータから GUM による

K-40 の平均値の標準偏差を求めると 1.56 %と得られた. このため, K-40 の不均質性不確 かさとして 1.6 %を用いる.

#### 6. 報告結果及び特性値の決定

共同実験は土壌を 50 mm 高さに充填した U8 試料で行った.参加試験所の測定値と測定 条件をまとめて添付資料3,4,5に示す.表8に,報告値とzスコア計算結果をまとめ た.zスコアは従来法(Classic)およびロバスト法(Robust)により求めた.ここで

Average: 平均值

SD : 室間再現標準偏差

 $RSD: 100 \times SD / Average$ 

*Median*:中央值

NIQR :標準化四分位範囲 (0.4713×四分位範囲で,ロバストな室間再現標準偏差) RNIQR:100×NIQR/Median

Classic z score : (x - Average) / SDRobust z score : (x - Median) / NIQR xは各試験所の報告値

zスコアによるといずれも3を越える報告値はなく,棄却するデータはない.また,ロバスト法による計算値は,試験所数が少ないために参考値として扱い,本共同実験の報告には従来法による平均と標準偏差を用いる.従って,認証標準物質の特性値は平均値とした.

JIS Z 8404-1:2006 (ISO 21748:2010)「測定の不確かさ-第1部:測定の不確かさの評価 における併行精度,再現精度及び真度の推定値の利用の指針」にもとづき,次項で述べる 不確かさに加え,室間再現標準偏差(表 8 の SD)も「もうひとつの不確かさ」として認 証書に記載する.

注: JIS Z 8404-1 は現 ISO の旧版 ISO/TS 21748:2004 の翻訳規格.

表8 報告値および z スコア計算値

報告値の単位:Bg/kg

|                           |        |         | 히커프    |        |         |        |        |         | 9      |
|---------------------------|--------|---------|--------|--------|---------|--------|--------|---------|--------|
|                           | 報告値    | Z SC    | ore    | 報告値    | Z SC    | ore    | 報告値    | Z SC    | ore    |
| Lab                       | Cs-134 | Classic | Robust | Cs-137 | Classic | Robust | K-40   | Classic | Robust |
| 1                         | 83.7   | -0.33   | -0.66  | 110.3  | -0.94   | -1.13  | 376.1  | -1.33   | -1.64  |
| 2                         | 79     | -1.31   | -2.00  | 118    | 0.49    | 0.18   | 398    | 0.10    | -0.14  |
| 3                         | 90.85  | 1.17    | 1.37   | 118.4  | 0.57    | 0.25   | 407.7  | 0.74    | 0.53   |
| 4                         | 87     | 0.36    | 0.28   | 120    | 0.87    | 0.52   | 400    | 0.24    | 0.00   |
| 5                         | 86.5   | 0.26    | 0.14   | 116    | 0.12    | -0.16  | 406    | 0.63    | 0.41   |
| 6                         | 86.2   | 0.19    | 0.05   | 116.9  | 0.29    | -0.01  | 410.4  | 0.92    | 0.71   |
| 7                         | 78.4   | -1.44   | -2.17  | 107    | -1.55   | -1.69  | 362    | -2.25   | -2.60  |
| 8                         | 80.71  | -0.96   | -1.51  | 109.8  | -1.03   | -1.22  | 387.5  | -0.58   | -0.86  |
| 10                        | 82.85  | -0.51   | -0.90  | 117.87 | 0.47    | 0.16   | 411.51 | 0.99    | 0.79   |
| 11                        | 87.2   | 0.40    | 0.33   | 117    | 0.31    | 0.01   | 400    | 0.24    | 0.00   |
| 12                        | 85.85  | 0.12    | -0.05  | 108.1  | -1.35   | -1.51  | 388.6  | -0.51   | -0.78  |
| 14                        | 95.0   | 2.04    | 2.56   | 124.8  | 1.76    | 1.34   | 409    | 0.82    | 0.62   |
| データ数 p                    | 12     |         |        | 12     |         |        | 12     |         |        |
| Average                   | 85.3   |         |        | 115.4  |         |        | 396.4  |         |        |
| SD                        | 4.78   |         |        | 5.37   |         |        | 15.3   |         |        |
| RSD %                     | 5.6    |         |        | 4.7    |         |        | 3.9    |         |        |
| $\overline{RSD}/\sqrt{p}$ | 1.62   |         |        | 1.35   |         |        | 1.11   |         |        |

| Median  | 86.0 |  | 116.95 |  | 400.0 |  |
|---------|------|--|--------|--|-------|--|
| NIQR    | 3.51 |  | 5.87   |  | 14.6  |  |
| RNIQR % | 4.1  |  | 5.0    |  | 3.7   |  |

表中の測定値では報告値をそのまま記載した.

試験所によっては、均質性試験とかねて複数の試料を測定していただいた.また、別の 方法での測定値を報告いただいた試験所もあった.参考のために、上記の表とは別にその 結果を添付資料6にまとめた.

また,添付資料7に報告されたγ線スペクトルの一部を示した. Lab 9 のデータは未着. Lab 13 は辞退された.

7. 不確かさの算出

共同実験のデータ解析では多くの場合に測定方法に関する室間のかたよりは無視される. しかし,JISZ8404-1A.2.2において述べられるように,共同実験で推定されるかたよりの 不確かさが無視できないときは不確かさのバジェット表に含む必要がある.従って,ここ では,考えられる不確かさの要因を整理し,かたよりを与えると考えられる要因に対して 不確かさを推定し,これを合成することにした.

文献によると、測定用試料調製, Ge 半導体検出器のエネルギー及び検出効率校正, 測定 試料の測定, 核データなどの要因が挙げられ, 下記の(1)から(4)に示すように詳細 な成分が議論されている. 今回の共同実験において考慮が必要と考えた要因については

(○) で示し説明を加えた.不確かさ要因の詳細については、文献参照のこと(C. Dovlete,
 P. P. Povinec: "Quantifying uncertainty in nuclear analytical measurements",
 IAEA-TECDOC-1401, pp.103-126 (2004)).

- (1) 測定試料の調製
  - ・分析種の損失及び/又は汚染
  - ・試料質量又は容量
  - ・試料の不均一性(○)
    - 5. 均質性評価において考察した.
  - · 前濃縮操作

(2) エネルギー及び検出効率校正

- ・測定時間内における機器の不安定性
- ・エネルギー校正
- ・検出効率校正(〇)

信頼性の高い放射性核種の定量を行うためには、測定に用いる Ge 半導体検出器の 検出効率を正しく校正する必要がある. Ge 半導体検出器の検出効率校正法として、 点線源測定法、体積線源測定法、計算に基づく方法がある. 点線源測定法、体積線源 測定法ではそれぞれに対応した標準試料を用いることで国家標準との計量トレーサ ビリティが確保された校正が実現できる. また、計算に基づく方法では Ge 検出器の 結晶サイズ等の詳細な幾何学的形状、試料形状等の情報から検出効率を計算する方法 がキャンベラ社により LabSOCS として開発されている(添付資料8を参照).

標準試料は複数の核種を含み、広いエネルギー範囲で関数フイッティングすること により検出効率の校正を行う.これによる不確かさは通常小さくここでは無視したが、 Lab14 からは K-40 付近のエネルギーでは無視できないかたよりを生じ可能性の指摘 があった. 添付資料9に記述した.

従って,検出効率校正における不確かさは,各参加試験所の校正法に起因する合成 標準不確かさ(表2に示した)を二乗平均することで求めた.

- (3) 測定試料の測定
- ・試料と標準間の測定ジオメトリーの違い
  - Lab 4 において参照標準として標準点線源が用いられたが、これはエネルギーに対 するピーク効率曲線を求めるためのもので、補正係数に含まれる測定試料とのジオメ トリーの違いについては同じ U8 容器によって測定されている.また、その他の試験 所では、すべての測定で U8 容器が用いられているため無視できるとした.

· 偶発同時計数

・サム効果(真の加算同時計数)(○)

今回の対象核種では Cs-134 が該当する. 多くの試験所では, ソフトウエアに含まれる機能を用いて補正を行っている.

Lab 2, Lab 3 及び Lab 14 の 3 試験所は, Cs-134 を標準試料に用いているので補 正は不要であった.

また, Lab 1, Lab 12 では, サム効果の補正は行わなかった. Lab 1 はサム効果の 影響を減らすため試料と標準線源は検出器から 5 cm の距離をとって測定された. 報 告によると,検出器に直上に置く場合に比べて, Cs-134 の放射能算出値が 12 %程度 増加したとされる. Lab 12 では検出効率の算出は単一の γ線を放出する Ce-139 (165.9 keV), Cs-137 (661.6 keV)と複数の γ線を放出するがほとんど 514 keV の γ線 しか放出しない Sr-85 を用いた. 測定位置は検出器表面から約 6 cm の距離で行った. 全ての試験所で適切な処置が取られていると考え,不確かさには合成しないことに

至くの試験所で適切な処直が取られていると考え、不確かさには合成しない した.

- ・不感時間の影響
- ・壊変時間(サンプリングから測定までの冷却期間及び測定期間)の影響
- ・試料の自己吸収(〇)

もし測定される試料の組成と密度が計数効率校正用標準物質と異なる場合,検出効率に対する自己吸収補正が必要となる.それらの補正は,試料のジオメトリー,組成及び密度,そして検出器パラメータに依存する.この補正は大容量,高原子量,高密度試料,そして低エネルギー光子に対して大きくなる.Lab14ではこの効果を無くするために同一の物質(土壌)を用いて参照標準物質を作製した.ちなみに,土壌の成分をSiO<sub>2</sub>(密度 1.5 g/cm<sup>3</sup>),参照標準の成分をAl<sub>2</sub>O<sub>3</sub>(密度 1.0 g/cm<sup>3</sup>)と考えて,高さ5cmで充填したU8容器による自己吸収の違いは小さく,必要な試験所はすべて適切に補正している.文献では,試料マトリックスの主成分元素が既知の場合,自己吸収補正係数の相対不確かさは1%以下(エネルギー60 keV 以上のγ線に対し)とされるので,ここでは1%とした.

報告された線減弱係数や試料の密度については参考のため添付資料10にまとめた.

- ・ピーク面積計算
- ・計数の統計(○)

計数による不確かさは主要な要因の一つである. 特に検出効率が小さい K-40 核種

についてはカウント数が小さく大きな要因となっている.この要因による不確かさが 他の要因と重複して観測されるが、ここでの共同実験では報告値の標準偏差に含まれ るものとしてかたよりとは考えないため直接に合成する要因には含めない.

- (4) 核データ
  - ・半減期による不確かさ
  - γ線放出率による不確かさ
    - 核データは添付資料3に報告されているように、3桁~4桁の精度を持っているため不確かさの要因としては無視した.

結論として、認証標準物質の合成標準不確かさは、共同実験の平均の標準不確かさ、参加試験所が用いた検出効率の校正の標準不確かさの二乗平均、自己吸収補正に含まれるかたより、均質性試験から推定された標準不確かさを合成して算出した. 拡張不確かさを算出する包含係数として *k*=2 を用いた.

| 不確かさ要因      | Cs-134<br>(%) | Cs-137<br>(%) | K-40<br>(%) |
|-------------|---------------|---------------|-------------|
| 共同実験        | 1.62          | 1.35          | 1.11        |
| 検出効率校正      | 2.42          | 2.30          | 2.32        |
| 自己吸収補正      | 1             | 1             | 1           |
| 均質性         | 1.6           | 1.6           | 1.6         |
| 合成標準不確かさ    | 3. 47         | 3. 27         | 3. 19       |
| 拡張不確かさ(k=2) | 6. 94         | 6. 54         | 6. 38       |

表9 不確かさの要因と算出値

|             | (Bq/kg) | (Bq/kg) | (Bq/kg) |
|-------------|---------|---------|---------|
| 拡張不確かさ(k=2) | 5.92    | 7.54    | 25.3    |

認証書に記載する拡張不確かさは次の通り.

| Cs-134 | 5.9 Bq/kg |
|--------|-----------|
| Cs-137 | 8 Bq/kg   |
| K-40   | 25 Bq/kg  |

ここで, 拡張不確かさは, 合成標準不確かさに信頼の水準約 95%に相当する包含係数 k=2 を乗じた値である.



以下の図に各核種の認証値と測定値の分布を示す.

一部の測定値に付随するエラーバーは報告された拡張不確かさである.

8.標準物質の利用

この認証標準物質には認証値の不確かさと所間(室間)再現標準偏差とが記載されている.そのため、本標準物質を測定し、次のような手順を利用して分析能力の妥当性確認や 測定器の精度管理に用いることができる.

拡張不確かさを推定する場合:

本標準物質を測定して測定値の不確かさを求めるには、本開発成果報告書における7 章あるいは文献を参照することができる. Cs-134 と Cs-137 が測定対象核種である限り, 試験所が必要とする手順での、本報告書との違いは、計数誤差と不均質性の取扱いであろう. 試験所は生産された多数の標準物質の内の一つを測定するので、不均質性についての 配慮は不要である.

その他の要因については、本報告書の取扱いに準じて、あるいは必要なら文献値などを 用いて算出することが可能であろう.

推定した拡張不確かさを用いると、次の式から測定値の信頼性を評価することが可能である. *En*数の絶対値は、1以下であることが望ましい.

$$En = (x - X) / (U_x^2 + U_X^2)^{0.5}$$
(6)

ここで x :試験所の値

X :認証値

- Ux: 試験所の値の拡張不確かさ(k=2)
- Ux:認証値の拡張不確かさ(k=2)

拡張不確かさを用いない場合:

認証書の所間(室間)再現標準偏差(SD)を用いることができる.所間再現標準偏差は 認証値決定のために共同実験に参加した試験所の測定値の平均値を基準として求めた標準 偏差である.

一般に,試験所において標準物質を分析したとき,その結果と認証値との差は所間標準 偏差の2倍(2SD)以内にあることが望ましい.これは技能試験において次の(7)式で求める z スコアの絶対値が2以下に入ることと同等である.

$$z = (x - X) / SD \tag{7}$$

9. 認証書

添付資料11に掲載する.

10. 結語

ここに放射能分析用土壌認証標準物質, JSAC 0471~0473 を製作した.

原子力発電所の事故からすでに1年が経過し、放射能汚染の拡大が懸念される中、早急 な対応が求められているが、本標準物質が分析値の信頼性の確保に有効な役割を果たすこ とが期待される.

業務計画の立案と検討,製品の試作,そして共同実験への参加,データ解析その他多くの面でこの開発事業を支えて頂いた関係者各位に深く感謝する次第である.

添付資料

#### 添付資料1 参加試験所が使用した参照標準の概略図



添付資料 2

### 放射能土壤試料調製

平成 24 年 3 月 23 日

(1) 放射能と試料量

平成23年10月11日に下記3種の土壌試料を受け取った.放射能と受入重量及び乾燥後重量を以下に示す.

電子ポケット線量計 マイドーズミニ PDM-122-SZ(最小目盛:1 μsV)を使って管 理をしている. 200 Bq/kgの土壤 A 袋に密着させて測定すると,2 μsV/(2 日間)であっ た.

| 試料名  | 放射能            | 受入重量(風袋込)               | 乾燥後重量   |
|------|----------------|-------------------------|---------|
| A(H) | 200 Bq/kg      | 12.7 kg                 | 11.8 kg |
| B(L) | 120 Bq/kg      | 72.8 kg                 | 66.7 kg |
| С    | 360 Bq/kg      | 2.2kg                   | 2.1kg   |
|      | 1 N. 1. 1 N. N | and the available to be |         |

乾燥条件:各試料ごと 4kg 程度に分割し,熱風循環式定温乾燥器にて 35℃,1日(24時間)乾燥

(2) 試料調製及び作製目標

各種土壌試料をアルミナボールミル粉砕,電磁振動篩い分けにより目標粒度の試料を分取し,A 試料及び B 試料については併せて一括混合を行い,標準物質及び技能試験用試料を調製する.

目標粒度:最大粒度:250 µm,最小粒度:63 µm

試料容器:U8容器

充填量:技能試験用は 50 mm 高さのみ 標準物質は 50 mm, 30 mm, 10 mm の 3 水準

A+B 試料

|           | 作製目標本数  |         |       |      |  |
|-----------|---------|---------|-------|------|--|
|           |         | 技能試験用   |       |      |  |
| 高さ mm     | 10      | 30      | 50    | 50   |  |
| 132 Bq/kg | 50 本    | 50 本    | 200 本 | 50 本 |  |
|           | (10本相当) | (30本相当) |       |      |  |
| 均質性試験     |         |         | 1     | 2本   |  |

C 試料は将来的に A+B の余り試料と混合し技能試験用として使用予定.

(3) 乾燥試料の篩い分け(未粉砕)

A 試料及び B 試料について乾燥後試料を未粉砕の状態で一端,篩い分けを行った.250 μm, 63 μm の篩を用い3分割した.篩後重量及び割合を以下に示す.

| 試料名 | 放射能                      | 篩後重量   | 割合  |
|-----|--------------------------|--------|-----|
| А   | 250 μm 以上                | 7.6 kg | 68% |
|     | $63{\sim}250~\mu{\rm m}$ | 2.4 kg | 22% |
|     | 63 µm 以下                 | 1.1 kg | 10% |

| 試料名 | 放射能                      | 篩後重量    | 割合   |
|-----|--------------------------|---------|------|
| В   | 250 μm 以上                | 47.9 kg | 73~% |
|     | $63{\sim}250~\mu{\rm m}$ | 14. 2kg | 22~% |
|     | 63 µm 以下                 | 3.8 kg  | 6 %  |

(4) 粉砕及び篩い分け

B 試料においてアルミナボールミル粉砕条件の検討をしつつ作業を行った. 詳細結果は6 ~ 7 ページに示す. 粉砕量が多くなるにつれ 250 μm 以上の割合は増え, 処理量は低下した. しかし, 目標粒度の 63~250 μm と過粉砕の 63 μm 以下の割合を比較すると最も良い傾向 が見受けられた.

粉砕時間については、時間が長くなるにつれ処理量は増えるが、過粉砕の63 μm以下の 割合の増加も見受けられた.粉砕時間は短い方が過粉砕が抑制され良い傾向にはあるが、 作業効率も考慮すると、粉砕時間は1~3時間程度が妥当かと考える.

上記より粉砕量 4.5 kg, 粉砕時間 3 時間をベースに作業を行った. 篩い後 250 µm 以上の試料については, 粉砕・篩いを数回繰り返し行った. 以下の表に処理後最終重量を示す.

| 試料粒度                     | A試料    | B試料     | C 試料    |
|--------------------------|--------|---------|---------|
| 250 μm 以上                | 1.4 kg | 3.4 kg  | 0.02 kg |
| $63{\sim}250~\mu{\rm m}$ | 7.6 kg | 48.5 kg | 1.5 kg  |
| 63 µm 以下                 | 2.2 kg | 13.6 kg | 0.4 kg  |

(5) 試料混合

上記で粉砕・篩い分けした A 試料及び B 試料の粒径 63~250 μm を合わせ, 拡翼式混合 機で一括予備混合した. さらに V 型混合機で再混合し, 試料の均質性を図った.



拡翼式混合機



V型混合機

(6) 均質性試験

一括混合後,3 個の容器(No.1, No.2, No.3)に保管した試料から下記の図のように6 点から均質性確認用試料を採取した.それぞれ試料番号を1-1,1-2,2-1,2-2,3-1,3-2とした.各試料 Mn, Cu, Zn の分析を2回ずつ行った.分析結果を次ペ ージに示す.結果より Mn, Cu, Zn 成分の均質性に問題は無いと考えられる.

上記試料採取時に,ほぼ同位置から2本ずつ 計12本分の試料を採取して,後述する(7)の瓶詰めに従ってU8容器 50 mmの試料を12本作製した. それぞれの試料番号を1-1

-1, 1-1-2, 1-2-1 ~ 3-2-2とし, 放射能測定均質性試験用試料として エヌエス環境株式会社に送付した.

また、(7) 瓶詰め後の残試料の各容器から2点ずつ計6点の含水率測定を行った.

(7) 試料瓶詰め

試料を U8 容器に入れた後,中蓋を入れてクッションボールを入れ(この時クッションボールは容器の上面より,やや上にする.),上蓋を閉めて試料を締め付けるようにする(試料が中蓋の上にいかないよう,十分注意する).上蓋を薬瓶の要領で透明ビニールテープ止めする.

| 瓶詰め量:50 mm | $135.0~{ m g}$ | 瓶詰め本数:50 mm | 250 本+予備 5 本 |
|------------|----------------|-------------|--------------|
| 30  mm     | 80.0 g         | 30  mm      | 50本          |
| 10 mm      | 30.0 g         | 10 mm       | 50本          |

保管容器 No.1 から 50 mm 試料 125 本, No.2 から 50 mm 試料 125 本, No.3 から 50 mm 試料予備 5 本, 30 mm 試料 50 本, 10 mm 試料 50 本を瓶詰めした. 瓶詰め順で試料には 試料番号(1~250+予備1~5 or 1~50)ラベルを貼付している.

| 試料粒度                     | A 試料   | B試料     | C 試料              | A+B 試料  |
|--------------------------|--------|---------|-------------------|---------|
| 250 μm 以上                | 1.4 kg | 3.4 kg  | 0.02 kg           | _       |
| $63{\sim}250~\mu{\rm m}$ | —      | —       | $1.5~\mathrm{kg}$ | 約 11 kg |
| 63 µm 以下                 | 2.2 kg | 13.6 kg | 0.4 kg            | —       |

瓶詰め後残り試料量(H24.3.23 現在)

(8) 共同実験用試料送付

瓶詰め 50 mm 水準試料の No.1, 2, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250 計 12 本を抜き出し, 共同実験用試料として平成 24 年 3 月 2 日に各分析機関に送付した(後日 2 試験所に 2 本を追加送付した).

また, Sr, Pu 分析試料として 50 mm 水準試料の予備 1~4 (3本と1本) を 2 分析機関 に平成 24 年 3 月 12 日に送付した.及び予備 5 を産総研 三浦様にお送り頂いた V 型容器 5 個に各 10.0 g ずつ瓶詰めし直し 1 分析機関に平成 24 年 3 月 16 日に送付した.



|               | 粉砕量   | 粉砕時間 | ボ−ル数 | 篩処理量  | 250 µ m以上 | 63 <b>~</b> 250 µ m | 63µm以下 |
|---------------|-------|------|------|-------|-----------|---------------------|--------|
| 試料B 乾燥        | 1.5kg | 30分  | 110  | 500 g | 159       | 200                 | 141    |
| 後250 µ m以     |       |      |      |       | 32%       | 40%                 | 28%    |
| エ師処理した<br>1回目 |       |      |      |       | 170       | 224                 | 132    |
|               |       |      |      |       | 34%       | 45%                 | 26%    |
|               | 1.5kg | 1時間  | 110  | 500 g | 55        | 264                 | 181    |
|               |       |      |      |       | 11%       | 53%                 | 36%    |
|               |       |      |      |       | 64        | 284                 | 156    |
|               |       |      |      |       | 13%       | 57%                 | 31%    |
|               | 2.5kg | 6時間  | 110  | 500 g | 146       | 234                 | 120    |
|               |       |      |      |       | 29%       | 47%                 | 24%    |
|               | 3kg   | 10分  | 110  | 500 g | 393       | 70                  | 37     |
|               |       |      |      |       | 79%       | 14%                 | 7%     |
|               | 3kg   | 1時間  | 110  | 500 g | 285       | 140                 | 64     |
|               |       |      |      |       | 57%       | 28%                 | 13%    |
|               | 3kg   | 3時間  | 110  | 500 g | 243       | 178                 | 79     |
|               |       |      |      |       | 49%       | 36%                 | 16%    |
|               | 3kg   | 1時間  | 55   | 500 g | 366       | 97                  | 38     |
|               |       |      |      |       | 73%       | 19%                 | 8%     |
|               |       |      |      |       | 362       | 94                  | 48     |
|               |       |      |      |       | 72%       | 19%                 | 10%    |
|               | 4.5kg | 1時間  | 110  | 500 g | 355       | 90                  | 54     |
|               |       |      |      |       | 71%       | 18%                 | 11%    |
|               |       |      |      |       | 354       | 124                 | 23     |
|               |       |      |      |       | 71%       | 25%                 | 5%     |
|               | 4.5kg | 3時間  | 110  | 500 g | 328       | 122                 | 49     |
|               |       |      |      |       | 66%       | 24%                 | 10%    |
|               |       |      |      |       | 340       | 120                 | 43     |
|               |       |      |      |       | 68%       | 24%                 | 9%     |
|               | 4.5kg | 4時間  | 110  | 500 g | 253       | 151                 | 96     |
|               |       |      |      |       | 51%       | 30%                 | 19%    |
|               |       |      |      |       | 253       | 153                 | 105    |
|               |       |      |      |       | 51%       | 31%                 | 21%    |

試料 B の篩後 250 μm 以上試料の1回目粉砕後,篩いデータ



|                  | 粉砕量   | 粉砕時間 | ボ−ル数 | 篩処理量  | 250 µ m以上 | 63 <b>~</b> 250 µ m | 63µm以下 |
|------------------|-------|------|------|-------|-----------|---------------------|--------|
| 試料B 250 μ        | 3kg   | 1時間  | 110  | 500 g | 323       | 135                 | 41     |
| m以上の篩処<br> 囲 2回日 |       |      |      |       | 65%       | 27%                 | 8%     |
|                  |       |      |      |       | 328       | 135                 | 37     |
|                  |       |      |      |       | 66%       | 27%                 | 7%     |
|                  | 3kg   | 3時間  | 110  | 500 g | 198       | 203                 | 99     |
|                  |       |      |      |       | 40%       | 41%                 | 20%    |
|                  |       |      |      |       | 197       | 212                 | 90     |
|                  |       |      |      |       | 39%       | 42%                 | 18%    |
|                  | 4.5kg | 30分  | 110  | 500 g | 441       | 52                  | 7      |
|                  |       |      |      |       | 88%       | 10%                 | 1%     |
|                  |       |      |      |       | 447       | 53                  | 3      |
|                  |       |      |      |       | 89%       | 11%                 | 1%     |
|                  | 4.5kg | 1時間  | 110  | 500 g | 411       | 72                  | 17     |
|                  |       |      |      |       | 82%       | 14%                 | 3%     |
|                  |       |      |      |       | 417       | 75                  | 13     |
|                  |       |      |      |       | 83%       | 15%                 | 3%     |
|                  | 4.5kg | 3時間  | 110  | 500 g | 358       | 112                 | 30     |
|                  |       |      |      |       | 72%       | 22%                 | 6%     |
|                  |       |      |      |       | 365       | 111                 | 28     |
|                  |       |      |      |       | 73%       | 22%                 | 6%     |
|                  | 4.5kg | 5時間  | 110  | 500 g | 335       | 130                 | 34     |
|                  |       |      |      |       | 67%       | 26%                 | 7%     |
|                  |       |      |      |       | 331       | 138                 | 35     |
|                  |       |      |      |       | 66%       | 28%                 | 7%     |
|                  | 5kg   | 6時間  | 110  | 500 g | 351       | 116                 | 31     |
|                  |       |      |      |       | 70%       | 23%                 | 6%     |
|                  |       |      |      |       | 358       | 121                 | 26     |
|                  |       |      |      |       | 72%       | 24%                 | 5%     |

試料 B の篩後 250 μm 以上試料の 2 回目粉砕後,篩いデータ



#### 添付資料 3 共同実験参加試験所の測定条件など

#### 供試品作製時での換算放射能濃度(2012-02-01JST00:00:00)

|                |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 試験所<br>番号      | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。                                                                                                                                                                                                                                                       | 核種                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 半減期                                                                                          | エネルギー                                                                                                                                                                                | 放出効率 %                                                                                                                                                                                          | 測定時間<br>live time(秒)                                                                                                             | 正味カウント数<br>N-Nb                                                                                                                    | バックグラウン<br>ドカウント数<br>Nb                                                          | ビーク計数<br>率<br>(カウント数/<br>か)                                  | 測定時の放射能<br>Bq                                                                                                                                                      | 供訊品TF裂时<br>の 放<br>射能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 供試品作製時の<br>放射能濃度<br>(Bq/kg)                                                                                      | 拡張不確かさ<br>( <i>k</i> =2)<br>(Bg/kg)                                                                              | 試料がないときの正<br>味バックグラウンドカ<br>ウント数 N'-Nb' *                                                                                                            | 試料がないときの<br>バックグラウンドカウ<br>ント数 Nb' *                                                                                                   | バックグラウンド<br>測定時間* 秒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |
|                | Ge検出器GEM20P4-70(相対効率20%, 半値<br>幅1.8keV)。<br>Cs-134の定量は2つのピークの平均値<br>バックグラウンドカウント数Nb,Nb'はピーク                                                                                                                                                                                                     | Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              | 個々のエネルギーを記<br>入する                                                                                                                                                                    | 個々に記入する                                                                                                                                                                                         |                                                                                                                                  |                                                                                                                                    |                                                                                  | 127                                                          |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  | 求め方は報告シート (不<br>確かさ) に記入する。                                                                                      |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                | フィッティングを行っているので,求めていない。解析方法の詳細は文献(鈴木章悟,伊                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. 0648y                                                                                     | 604. 72                                                                                                                                                                              | 97.62                                                                                                                                                                                           | 581750                                                                                                                           | 23446.6                                                                                                                            |                                                                                  | 0.040304                                                     | 10.91                                                                                                                                                              | 11.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83.62962963                                                                                                      |                                                                                                                  | 1017.76                                                                                                                                             |                                                                                                                                       | 339100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                  |
|                | 下信也:Radioisotopes,57,429(2008))に記載。                                                                                                                                                                                                                                                             | Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0040                                                                                       | 個々のエネルギーを記<br>入する<br><b>フロF OC</b>                                                                                                                                                   | 個々に記入する                                                                                                                                                                                         | 504750                                                                                                                           | 050140                                                                                                                             |                                                                                  | 0.04400                                                      | 10.00                                                                                                                                                              | 11.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 7777770                                                                                                       | 求め方は報告シート(不<br>確かさ)に記入する。                                                                                        | 1000.04                                                                                                                                             |                                                                                                                                       | 00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
| 1              | サム効果や自己吸収の補正は行っていな<br>いが, サム効果を減らすため試料と標準線                                                                                                                                                                                                                                                      | Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z. 0648y                                                                                     | /95.80<br>定量値(平均値など)<br>を記入する。求め方の                                                                                                                                                   | 85. 53                                                                                                                                                                                          | 581/50                                                                                                                           | 25614.3                                                                                                                            |                                                                                  | 0.04403                                                      | 10.93                                                                                                                                                              | 11.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83.//////8                                                                                                       | 求め方は報告シート(不<br>確かさ)に記入する。                                                                                        | 1069.94                                                                                                                                             |                                                                                                                                       | 339100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )                                                  |
|                | 源は検出器から5cmの距離をとった。検出<br>器に直に置く場合に比べて, Cs−1.34の放射                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              | 10.92                                                                                                                                                              | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.7                                                                                                             | 求め方は報告シート(不                                                                                                      |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                                                  |
|                | 能算出値が12%程度増加した。効率曲線は<br>同じ高さの体積混合線源Co-60,Mn-54,Cs-                                                                                                                                                                                                                                              | Cs-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30. 07y                                                                                      | 661.66                                                                                                                                                                               | 85. 51                                                                                                                                                                                          | 581750                                                                                                                           | 16688.5                                                                                                                            |                                                                                  | 0.028687                                                     | 14.86                                                                                                                                                              | 14.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.3                                                                                                            | 確かさ)に記入する。                                                                                                       | 1087.57                                                                                                                                             |                                                                                                                                       | 339100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                  |
|                | 137の合計4ピークの効率を両対数グラフで<br>線形近似して求めた。                                                                                                                                                                                                                                                             | K-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 28F+09                                                                                     | 1460 83                                                                                                                                                                              | 10 7                                                                                                                                                                                            | 581750                                                                                                                           | 27607                                                                                                                              |                                                                                  | 0 047455                                                     | 50 77                                                                                                                                                              | 50 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 376 1                                                                                                            | 求め方は報告シート(不<br>確かさ)に記入する。                                                                                        | 13187 1                                                                                                                                             |                                                                                                                                       | 33910(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                  |
|                |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 上記項目<br>WWW Table of R                                                                       | の出典を記入し<br>adioactive ls                                                                                                                                                             | して下さい<br>sotopes http://                                                                                                                                                                        | ′ie.lbl.gov∕to                                                                                                                   | i/                                                                                                                                 |                                                                                  |                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                  |
|                |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                  | .,                                                                                                                                 |                                                                                  |                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                  |
| 試験所<br>番号      | 測定条件概要。サム効果や自己吸収補正の有無など、校正・測定方法を付記する。                                                                                                                                                                                                                                                           | HPGe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                | K-40:和光の塩化カリウム99.9%をU8容器に                                                                                                                                                                                                                                                                       | <u>STS12301</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Size: U-8 (5 cm                                                                              | )                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    | 1                                                                                |                                                              |                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                | 土壌標準物質と同じ容積になるように密に<br>詰めて測定しています。                                                                                                                                                                                                                                                              | 測定開始日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nuclide                                                                                      | half-life (y)                                                                                                                                                                        | E(keV)                                                                                                                                                                                          | Live time [sec]                                                                                                                  | cps                                                                                                                                | err (1σ)                                                                         | 放出率                                                          | weight(g)                                                                                                                                                          | eff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 試料測定日の<br>Activity (Bq/kg)                                                                                       | err (1σ)                                                                                                         | 試料作製日                                                                                                                                               | 試料作製日から測<br>定日までの日数                                                                                                                   | 試料作製日の<br>Activity (Bq/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | err (1σ)                                           |
|                | 測定時間:96858秒<br>Grada:65249 カウント                                                                                                                                                                                                                                                                 | 2008/3/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cs-134                                                                                       | 2.065                                                                                                                                                                                | 604.7<br>661.7                                                                                                                                                                                  | 344,222                                                                                                                          | 0.0829                                                                                                                             | 0.0005                                                                           | 0.976                                                        | 135.0                                                                                                                                                              | 8.40E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.9                                                                                                             | 0.5                                                                                                              | 2008/1/31                                                                                                                                           | 55<br>55                                                                                                                              | <u>79</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                  |
|                | Net: 63713 カウント                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K-40                                                                                         | 1.277E+09                                                                                                                                                                            | 1460.8                                                                                                                                                                                          | 344,222                                                                                                                          | 0.0207039                                                                                                                          | 0.0003                                                                           | 0.108                                                        | 135.0                                                                                                                                                              | 0.0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3977                                                                                                           | 4.9                                                                                                              | 2008/1/31                                                                                                                                           | 55                                                                                                                                    | 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.9                                                |
|                | これまで岩石試料等で組成を求め、自己吸                                                                                                                                                                                                                                                                             | KCI (K-40) Bq/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.3                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                | 収の計算をしてきましたが、K-40のγ線エ<br>スルギーでは影響がたいため会同け補正を                                                                                                                                                                                                                                                    | 分岐比 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.8                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              | i                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                | 行っていません。塩化カリウム中のK-40に                                                                                                                                                                                                                                                                           | サンプル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Energy / keV                                                                                 | 高さ (cm)                                                                                                                                                                              | KCI 正味の重量 (g)                                                                                                                                                                                   | 放射能強度 (Bq)                                                                                                                       | gps                                                                                                                                | cps (net)                                                                        | eff.                                                         |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
| 2              |                                                                                                                                                                                                                                                                                                 | KCI U-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1460.8                                                                                       | 5                                                                                                                                                                                    | 104                                                                                                                                                                                             | 1688                                                                                                                             | 182                                                                                                                                | 0.65                                                                             | 0                                                            |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                | 行っています。石石試料中のカリノムの定量値より算出した放射能濃度と実測値の比                                                                                                                                                                                                                                                          | <u>ш., -</u> ди                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              | 1                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                | 較も行っております。                                                                                                                                                                                                                                                                                      | リンノル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | サンブル (a)                                                                                     | -                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                |                                                                                                                                                                                                                                                                                                 | STS12301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>サンブル (g)</u><br>135.0                                                                     | •                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                  |                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
|                |                                                                                                                                                                                                                                                                                                 | STS12301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>サンプル (q)</u><br>135.0                                                                     | •<br>•<br>•                                                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                    |                                                                                  |                                                              | \                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                | 1                                                                                                                | 0                                                                                                                                                   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | П                                                  |
|                |                                                                                                                                                                                                                                                                                                 | <u>リンフル</u><br>STS12301<br>サンプル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>サンプル (q)</u><br>135.0<br>高さ (mm)                                                          | Measureme                                                                                                                                                                            | IAEA crrection                                                                                                                                                                                  | Elapsed time                                                                                                                     | 1/                                                                                                                                 | AEA Activity (20                                                                 | 07) (Bq/kg                                                   | )                                                                                                                                                                  | λ Cs-134 (day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | λ Cs-137 (day)                                                                                                   |                                                                                                                  | Corrected Acti                                                                                                                                      | vity (2011) (Bq/                                                                                                                      | (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | veight (kg                                         |
|                |                                                                                                                                                                                                                                                                                                 | <u>955ル</u><br>STS12301<br>サンプル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | サンプル (g)<br>135.0<br>高さ (mm)                                                                 | Measureme<br>nt date                                                                                                                                                                 | IAEA crrection<br>date                                                                                                                                                                          | Elapsed time<br>(day)                                                                                                            | ا/<br>Cs-134                                                                                                                       | AEA Activity (20                                                                 | 07) (Bq/kg<br>Cs-137                                         | )<br>error                                                                                                                                                         | λ Cs-134 (day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | λ Cs-137 (day)                                                                                                   | Cs-134                                                                                                           | Corrected Acti                                                                                                                                      | vity (2011) (Bq/k                                                                                                                     | (g)<br>error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | veight (kg                                         |
|                |                                                                                                                                                                                                                                                                                                 | <u>5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | サンブル (g)<br>135.0<br>高さ (mm)<br>30<br>35                                                     | Measureme<br>nt date<br>2007/11/1<br>2007/11/3                                                                                                                                       | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14                                                                                                                                              | Elapsed time<br>(day)<br>1479<br>1481                                                                                            | Cs-134<br>59.4<br>59.4                                                                                                             | AEA Activity (20<br>error<br>1.7                                                 | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5                         | )<br>error<br>1.4<br>1.4                                                                                                                                           | λ Cs-134 (day)<br>9.19E-04<br>9.19F-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | λ Cs-137 (day)<br>6.29E-05<br>6.29F-05                                                                           | Cs-134<br>15.3<br>15.2                                                                                           | Corrected Acti<br>error<br>0.4<br>0.4                                                                                                               | vity (2011) (Bq/k<br>Cs-137<br>62.4<br>62.4                                                                                           | (g)<br><u>error</u><br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | veight (kg<br>0.0632<br>0.0731                     |
|                |                                                                                                                                                                                                                                                                                                 | <u>3 5777</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40                                               | Measureme<br>nt date<br>2007/11/1<br>2007/11/3<br>2007/10/17                                                                                                                         | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14                                                                                                                                | Elapsed time<br>(day)<br>1479<br>1481<br>1464                                                                                    | Cs-134<br>59.4<br>59.4<br>59.4<br>59.4                                                                                             | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7                                   | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5                 | )<br>error<br>1.4<br>1.4<br>1.4                                                                                                                                    | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05                                                               | Cs-134<br>15.3<br>15.2<br>15.5                                                                                   | Corrected Acti<br>error<br>0.4<br>0.4                                                                                                               | vity (2011) (Bq/ł<br>Cs-137<br>62.4<br>62.5                                                                                           | (g)<br><u>error</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | veight (kg<br>0.0632<br>0.0731<br>0.0772           |
|                |                                                                                                                                                                                                                                                                                                 | リンプル<br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm<br>IAEA-444 45mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45                                         | Measureme<br>nt date<br>2007/11/1<br>2007/11/3<br>2007/10/17<br>2007/10/26                                                                                                           | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14                                                                                                                  | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473                                                                            | الا<br><u>Cs-134</u><br>59.4<br>59.4<br>59.4<br>59.4<br>59.4                                                                       | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7                     | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5<br>68.5<br>68.5 | )<br><u>error</u><br>1.4<br>1.4<br>1.4<br>1.4<br>1.4                                                                                                               | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05                                                   | Cs-134<br>15.3<br>15.2<br>15.5<br>15.3                                                                           | Corrected Acti<br>error<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                 | vity (2011) (Bq/ł<br>Cs-137<br>62.4<br>62.4<br>62.5<br>62.4                                                                           | (g)<br><u>error</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |
| 試験所番号          | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。                                                                                                                                                                                                                                                       | <u>リンプル</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm<br>IAEA-444 45mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45<br>半減期                                  | Measureme<br>nt date<br>2007/11/1<br>2007/10/17<br>2007/10/17<br>2007/10/26<br>エネルギー                                                                                                 | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>放出効率 %                                                                                                        | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473<br>測定時間<br>live time(秒)                                                    | レ<br><u>Cs-134</u><br>59.4<br>59.4<br>59.4<br>59.4<br>正味カウント数<br>N-Nb                                                              | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>バックグラウン<br>ド数<br>Nb     | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5<br>68.5         | )<br><u>error</u><br>1.4<br>1.4<br>1.4<br>1.4<br>・感度係数(cps/Bq)を<br>用した全ての核種のり<br>(cps/Bq)                                                                          | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>家めるために使<br>惑度係数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>検出効率%                              | Cs-134<br>15.3<br>15.2<br>15.5<br>15.3                                                                           | Corrected Acti<br>error<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                          | vity (2011) (Bq/ł<br>Cs-137<br>62.4<br>62.4<br>62.5<br>62.4<br>62.5<br>62.4<br>定結果                                                    | (g)<br><u>error</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |
| 試験所番号          | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br>Cs-137及びCs-134の塩酸溶液の放射能を                                                                                                                                                                                                                           | <u>リンプル</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm<br>IAEA-444 45mm<br>核種                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45<br>半減期                                  | Measureme<br>nt date<br>2007/11/1<br>2007/11/3<br>2007/10/17<br>2007/10/26<br>エネルギー                                                                                                  | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>放出効率 %                                                                                                        | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473<br>測定時間<br>live time(秒)                                                    | レ<br><u>Cs-134</u><br>59.4<br>59.4<br>59.4<br>59.4<br>59.4<br>正味カウント数<br>N-Nb                                                      | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>バックグラウン<br>ドカウント数<br>Nb | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5<br>68.5         | )<br><u>error</u><br>1.4<br>1.4<br>1.4<br>1.4<br>・感度係数(cps/Bq)を<br>用した全ての核種のり<br>(cps/Bq)<br>Cs-134                                                                | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>マかるために使<br>感度係数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>検出効率 %<br>2.74 %                               | Cs-134<br>15.3<br>15.2<br>15.5<br>15.3<br>Cs-137 1.184E                                                          | Corrected Acti<br><u>error</u><br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                   | vity (2011) (Bq/ł<br>Cs-137<br>62.4<br>62.4<br>62.5<br>62.4<br>定結果<br>定結果                                                             | (g)<br><u>error</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>9% (k=2)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |
| 試験所<br>番号      | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br>Cs-137及びCs-134の塩酸溶液の放射能を<br>それぞれ電離箱で測定した後、希釈してU-                                                                                                                                                                                                   | <u>リンプル</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm<br>IAEA-444 45mm<br>K種<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45<br>半減期<br>2.1年                          | Measureme<br>nt date<br>2007/11/1<br>2007/10/17<br>2007/10/17<br>2007/10/26<br>エネルギー<br><sup>個々のエネルキーを証</sup><br>96 + 802 ke <sup>1</sup>                                            | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>放出効率 %<br><sup>個々に記入する</sup><br>2.74%                                                                         | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473<br>測定時間<br>live time(秒)                                                    | レ<br><u>Cs-134</u><br>59.4<br>59.4<br>59.4<br>59.4<br>正味カウント数<br>N-Nb<br>77282と59203                                               | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>バックグラウン<br>ドカウント数<br>Nb | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5<br>68.5         | )<br><u>error</u><br>1.4<br>1.4<br>1.4<br>1.4<br>・感度係数(cps/Bq)を<br>用した全ての核種のり<br>(cps/Bq)<br><u>Cs=134</u><br>Cs=137                                               | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>マかるために使<br>惑度係数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>検出効率 %<br>2.74 %<br>3.64%                      | Cs-134<br>15.3<br>15.2<br>15.5<br>15.3<br>Cs-137 1.184E-<br>Cs-134 9.085E-                                       | Corrected Acti<br>error<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>別<br>-01 Bq g-1 相身                                               | vity (2011) (Bq/ł<br><u>Cs-137</u><br><u>62.4</u><br><u>62.4</u><br><u>62.5</u><br><u>62.4</u><br>定結果<br>対拡張不確かさ 7<br>対拡張不確かさ 7       | (g)<br><u>error</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>0% (k=2)</u><br>.0% (k=2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |
| 試験所番号          | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br>Cs-137及びCs-134の塩酸溶液の放射能を<br>それぞれ電離箱で測定した後、希釈してU-<br>8容器に入れたものを自作して、それぞれ                                                                                                                                                                            | <u>リンプル</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm<br>IAEA-444 45mm<br>IAEA-444 45mm<br>K種<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45<br>半減期<br>2.1年                          | Measureme<br>nt date<br>2007/11/1<br>2007/10/17<br>2007/10/17<br>2007/10/26<br>エネルギー<br>個々のエネルギーを証<br>り合 + 802 kel<br>個本のエネルギーを証                                                     | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>放出効率 %<br><sup>個々に記入する</sup><br>2.74%<br><sup>個々に記入する</sup>                                                   | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473<br>测定時間<br>live time(秒)<br>878长207500加星平均                                  | レ<br><u>Cs-134</u><br>59.4<br>59.4<br>59.4<br>59.4<br>正味カウント数<br>N-Nb<br>77282と59203                                               | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>バックグラウン<br>ドカウント数<br>Nb | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5<br>68.5         | )<br>error<br>1.4<br>1.4<br>1.4<br>1.4<br>・感度係数(cps/Bq)を<br>用した全ての核種の)<br>(cps/Bq)<br>Cs=134<br>Cs=137<br>K-40                                                     | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>マンクトントレート<br>マンクトントレート                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>検出効率 %<br>2.74 %<br>3.64%<br>2.44%             | Cs-134<br>15.3<br>15.2<br>15.5<br>15.3<br>Cs-137 1.184E-<br>Cs-134 9.085E-<br>K-40 4.077E-01                     | Corrected Acti<br>error<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>20 Bq g-1 相対<br>1 Bq g-1 相対                                      | vity (2011) (Bq/ł<br><u>Cs-137</u><br>62.4<br>62.5<br>62.5<br>62.4<br>定結果<br>対拡張不確かさ7<br>な張不確かさ7.5%                                   | (g)<br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.3</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u>1.5</u><br><u></u>                                                                                                                                                                                                                                                                                                               | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |
| 試験所番号          | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br>Cs-137及びCs-134の塩酸溶液の放射能を<br>それぞれ電離箱で測定した後、希釈してU-<br>8容器に入れたものを自作して、それぞれ<br>Cs-137及びCs-134に対するゲルマニウム<br>************************************                                                                                                        | <u>リンプル</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm<br>IAEA-444 45mm<br>IAEA-444 45mm<br>IAEA-444 45mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45<br>半減期<br>2.1年<br>2.1年                  | Measureme<br>nt date<br>2007/11/1<br>2007/10/17<br>2007/10/17<br>2007/10/26<br>エネルギー<br><sup>個々のエネルギーを記<br/>クする<br/>196 + 802 kel<br/><sup>個々のエネルギーを記<br/>点<br/>5605 keV</sup></sup> | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>放出効率 %<br><sup>個々に記入する</sup><br>2.74%<br><sup>個々に記入する</sup><br>3.15%                                          | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473<br>测定時間<br>live time(秒)<br>875秒220万秒の加星平均<br>875秒220万秒の加星平均                | レ<br>Cs-134<br>59.4<br>59.4<br>59.4<br>59.4<br>正味カウント数<br>N-Nb<br>77282と59203<br>30379と77282                                       | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>バックグラウン<br>ドカウント数<br>Nb | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5<br>68.5         | )<br>error<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>・感度係数(cps/Bq)を<br>用した全ての核種の)<br>(cps/Bq)<br>Cs-134<br>Cs-137<br>K-40<br>・定量に使用した感                                 | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>マルのるために使<br>感度係数<br>(cps/Bq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>検出効率 %<br>2.74 %<br>3.64%<br>2.44%             | Cs-134<br>15.3<br>15.2<br>15.5<br>15.3<br>Cs-137 1.184E-<br>Cs-134 9.085E-<br>K-40 4.077E-01<br>参照日 : 2012年      | Corrected Acti<br>error<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>2 Bq g-1 相対<br>1 Bq g-1 相対<br>1 Bq g-1 相対<br>2月1日JST 00:0 | vity (2011) (Bq/ł<br><u>Cs-137</u><br><u>62.4</u><br><u>62.5</u><br><u>62.4</u><br>定結果<br>対拡張不確かさ7<br>広張不確かさ7.59<br>20                | <pre><g) %="" (k="2)" .0%="" 1.3="" <="" error="" pre=""></g)></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |
| 試験所<br>番号      | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br>Cs-137及びCs-134の塩酸溶液の放射能を<br>それぞれ電離箱で測定した後、希釈してU-<br>8容器に入れたものを自作して、それぞれ<br>Cs-137及びCs-134に対するゲルマニウム<br>半導体検出器の校正に使用した。また日本<br>アイソトープ協会が販売している放射能標                                                                                                  | <u>サンプル</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm<br>IAEA-444 45mm<br>IAEA-444 45mm<br>IAEA-444 45mm<br>IAEA-444 45mm<br>IAEA-444 45mm<br>IAEA-444 45mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45<br>半減期<br>2.1年<br>2.1年<br>30.2年         | Measureme<br>nt date<br>2007/11/1<br>2007/10/17<br>2007/10/26<br>エネルギー<br><sup>個々のエネルギーを記</sup><br>/96 + 802 ke<br><sup>個々のエネルモーを記</sup><br>605 keV<br>662 keV                       | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>旅出効率 %<br><sup>個々に記入する</sup><br>3.15%<br>3.64%                                                  | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473<br>減定時間<br>live time(秒)<br>8万参と20万参の加重平均<br>8万参と20万参の加重平均                  | //<br><u>Cs-134</u><br>59.4<br>59.4<br>59.4<br>59.4<br>正味カウント数<br>N-Nb<br>77282と59203<br>30379と77282<br>37813と94835                | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>バックグラウン<br>ドカウント数<br>Nb | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5<br>68.5         | )<br>error<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>・感度係数(cps/Bq)を<br>用した全ての核種の!<br>(cps/Bq)<br>Cs-134<br>Cs-137<br>K-40<br>・定量に使用した感.<br>Cs-134<br>Cs-137            | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>マンクトンション<br>マンクトンション<br>マンクトンション<br>(cps/Bq)<br>2.74 %<br>3.64%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>検出効率 %<br>2.74 %<br>3.64%<br>2.44%             | Cs-134<br>15.3<br>15.2<br>15.5<br>15.3<br>Cs-137 1.184E-<br>Cs-134 9.085E-<br>K-40 4.077E-01<br>参照日:2012年        | Corrected Acti<br>error<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                       | vity (2011) (Bq/k<br><u>Cs-137</u><br><u>62.4</u><br><u>62.4</u><br><u>62.5</u><br><u>62.4</u><br>定結果<br>対拡張不確かさ7<br>な張不確かさ7.5%<br>00 | <g)<br><u>error</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.6</u><br/>(k=2)<br/>(k=2)<br/>(k=2)<br/>(k=2)</g)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |
| 武験所<br>番号<br>3 | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br>Cs-137及びCs-134の塩酸溶液の放射能を<br>それぞれ電離宿で測定した後、希釈してU-<br>8容器に入れたものを自作して、それぞれ<br>Cs-137及びCs-134に対するゲルマニウム<br>半導体検出器の校正に使用した。また日本<br>アイソトーブ協会が販売している放射能標<br>準ガンマ体積線源(9核種)を用いて効率曲<br>線を作成した40(二対する効率を内護)に上り                                                | <u>サンプル</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 40mm<br>IAEA-444 45mm<br>IAEA-444 45mm<br>Ka種<br>Cs-134<br>Cs-134<br>Cs-137<br>K-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45<br>半減期<br>2.1年<br>2.1年<br>30.2年         | Measureme<br>nt date<br>2007/11/1<br>2007/10/17<br>2007/10/26<br>エネルギー<br><sup>個々のエネルギー</sup> を紹<br><sup>入する</sup><br>605 keV<br>662 keV<br>1461 keV                                 | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>施出効率 %<br><sup>僅々に記入する</sup><br>2.74%<br><sup>僅々に記入する</sup><br>3.15%<br>3.64%<br>2.74%          | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473<br>減定時間<br>live time(秒)<br>8万秒と20万秒の加重平均<br>8万秒と20万秒の加重平均<br>8万秒と20万秒の加重平均 | レ<br>Cs-134<br>59.4<br>59.4<br>59.4<br>59.4<br>59.4<br>正味カウント数<br>N-Nb<br>77282と59203<br>30379と77282<br>37813と94835<br>11712と29926 | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>バックグラウン<br>ドカウント数<br>Nb | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5<br>68.5         | )<br><u>error</u><br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>Cos/134<br>Cos-134<br>Cos-134<br>Cos-134<br>Cos-134<br>Cos-134<br>Cos-134<br>Cos-137<br>K-40 | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>家めるために使<br>感度係数<br><u>支係数(cps/Bq)</u><br>2.74 %<br>3.64%<br>2.44%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>検出効率 %<br>2.74 %<br>3.64%<br>2.44% | <u>Cs-134</u><br>15.3<br>15.2<br>15.5<br>15.3<br>Cs-137 1.184E<br>Cs-134 9.085E<br>K-40 4.077E-01<br>参照日 : 2012年 | Corrected Acti<br>error<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>-01 Bq g-1 相対<br>1 Bq g-1 相対<br>2月1日JST 00:                             | vity (2011) (Bq/k<br><u>Cs-137</u><br>62.4<br>62.5<br>62.4<br>62.5<br>62.4<br>定結果<br>対拡張不確かさ7<br>対拡張不確かさ7<br>55<br>20                 | <pre><g) (k="2)" 0%="" 1.3="" 6="" <="" error="" pre=""></g)></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |
| 試験所<br>番号<br>3 | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br>Cs-137及びCs-134の塩酸溶液の放射能を<br>それぞれ電離箱で測定した後、希釈してU-<br>8容器に入れたものを自作して、それぞれ<br>Cs-137及びCs-134に対するゲルマニウム<br>半導体検出器の校正に使用した。また日本<br>アイソトーブ協会が販売している放射能標<br>準ガンマ体積線源(9核種)を用いて効率曲<br>線を作成しK-40に対する効率を内挿により<br>求めた。Cs-1340標準線源で配置を合わ<br>サて効率校正をしており、サ人効理け続い | <u>サンプル</u><br>STS12301<br>サンプル<br>IAEA-444 30mm<br>IAEA-444 35mm<br>IAEA-444 45mm<br>IAEA-444 45mm | サンブル (q)<br>135.0<br>高さ (mm)<br>30<br>35<br>40<br>45<br>半減期<br>2.1年<br>2.1年<br>30.2年<br>上記項目 | Measureme<br>nt date<br>2007/11/1<br>2007/10/17<br>2007/10/17<br>2007/10/26<br>エネルギー<br><sup>個々のエネルギーを記<br/>人する。<br/>605 keV<br/>662 keV<br/>662 keV<br/>1461 keV<br/>の出典を記入し</sup>  | IAEA crrection<br>date<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>2003/10/14<br>放出効率 %<br><sup>個々に起入する</sup><br>2.74%<br><sup>個々に起入する</sup><br>3.15%<br>3.64%<br>2.44%<br>こて下さい | Elapsed time<br>(day)<br>1479<br>1481<br>1464<br>1473<br>測定時間<br>live time(秒)<br>8万秒と20万秒の加重平均<br>8万秒と20万秒の加重平均<br>8万秒と20万秒の加重平均 | レ<br>Cs-134<br>59.4<br>59.4<br>59.4<br>59.4<br>59.4<br>正味カウント数<br>N-Nb<br>77282と59203<br>30379と77282<br>37813と94835<br>11712と29926 | AEA Activity (20<br>error<br>1.7<br>1.7<br>1.7<br>1.7<br>バックグラウン<br>ドカウント数<br>Nb | 07) (Bq/kg<br>Cs-137<br>68.5<br>68.5<br>68.5                 | )<br>error<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>・感度係数(cps/Bq)を<br>用した全ての核種の)<br>(cps/Bq)<br>Cs-134<br>Cs-137<br>K-40<br>・定量に使用した感<br>Cs-137<br>K-40<br>K-40       | λ Cs-134 (day)<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>9.19E-04<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンクトン<br>マンク<br>マンク<br>マンク<br>マンク<br>マン<br>マン<br>マン<br>マン<br>マン<br>マン<br>マン<br>マン<br>マン<br>マン<br>マン<br>マン<br>マン | λ Cs-137 (day)<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>6.29E-05<br>依出効率 %<br>2.74 %<br>3.64%<br>2.44%             | Cs-134<br>15.3<br>15.2<br>15.5<br>15.3<br>Cs-137 1.184E-<br>Cs-134 9.085E-<br>K-40 4.077E-01<br>参照日 : 2012年      | Corrected Acti<br>error<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>2月 1 相対<br>1 Bq g-1 相対<br>1 Bq g-1 相対<br>1 Bq g-1 相対             | vity (2011) (Bq/ł<br><u>Cs-137</u><br>62.4<br>62.5<br>62.4<br>定結果<br>対拡張不確かさ7<br>広張不確かさ7.55<br>00                                     | <g)<br><u>error</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.3</u><br/><u>1.4</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1.6</u><br/><u>1</u></g)<br> | veight (kg<br>0.0632<br>0.0731<br>0.0772<br>0.0863 |

| 試験所<br>番号 | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。                 | 核種     | 半減期<br>(年)             | エネルギー                                  | 放出効率 %                                  | 測定時間<br>live time(秒) | 正味カウント数<br>N-Nb | バックグラウン<br>ドカウント数<br>Nb | ピーク計数率<br>(カウント数/<br>秒) | 測定時の放射能<br>Bq | 供試品作製時<br>の 放<br>射能<br>Bq | 供試品作製時の<br>放射能濃度<br><sub>(Bq/kg)</sub> | 拡張不確かさ<br>( <i>k</i> =2)<br>(Bq/kg) | またわかないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'- | 試料がないと<br>きのバックグラ<br>ウンドカウント<br>数 Nb'* | バックグラウンド<br>測定時間 <sup>*</sup> 秒 |
|-----------|-----------------------------------------------------------|--------|------------------------|----------------------------------------|-----------------------------------------|----------------------|-----------------|-------------------------|-------------------------|---------------|---------------------------|----------------------------------------|-------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|
|           | 測定試料形状依存性は <sup>137</sup> Cs容積線源を                         | Cs-134 | 2.06                   | 795.8                                  | 85.4                                    | 75814                | 7583.1          | 498.9                   | 0.100022                | 11            | 12                        | 87                                     | 8.7                                 | 19.8                                     | 284.2                                  | 145812                          |
|           | エネルギー依存性は混合核種点線源を、それぞれ測定して求めた。たち $5^7$ Co $6^{60}$ Co及    | Cs-137 | 30 14                  | 661 6                                  | 85 1                                    | 75814                | 12984 3         | 524.7                   | 0 171265                | 16            | 16                        | 120                                    | 求め方は報告シート(不<br>確かさ)に記入する。<br>11     | 13.4                                     | 252.6                                  | 145812                          |
|           | び <sup>88</sup> Yのピーク効率を求める際には、サム効<br>単の影響について補正した。測定試料によ | K-40   | 1277000000             | 1460.9                                 | 10.7                                    | 75014                | 2060.7          | 1029.                   | 0.020052                | T0            | 54                        | 400                                    | 求め方は報告シート(不<br>確かさ)に記入する。           | 07.7                                     | 140.0                                  | 145012                          |
|           | るγ線の自己吸収は、試料ごとに計算により補正した。また、134Csはサム効果の影響                 |        | 上記項目<br>Atomic Data ar | ー 1400.8<br> の出典を記入し<br>nd Nuclear Dat | <u>10.7</u><br>して下さい<br>ta Tables(1983年 | 73614<br>[<br>E)     | 2900.7          | 123.3                   | 0.039032                | 04            | 54                        | 400                                    | 41                                  | 21.1                                     | 142.5                                  | 143612                          |
|           | を補止した。                                                    |        |                        |                                        |                                         |                      |                 |                         |                         |               |                           |                                        |                                     |                                          |                                        |                                 |
| 4         |                                                           |        |                        |                                        |                                         |                      |                 |                         |                         |               |                           |                                        |                                     |                                          |                                        |                                 |
|           |                                                           |        |                        |                                        |                                         |                      |                 |                         |                         |               |                           |                                        |                                     |                                          |                                        |                                 |
|           |                                                           |        |                        |                                        |                                         |                      |                 |                         |                         |               |                           |                                        |                                     |                                          |                                        |                                 |
|           |                                                           |        |                        |                                        |                                         |                      |                 |                         |                         |               |                           |                                        |                                     |                                          |                                        |                                 |
|           |                                                           |        |                        |                                        |                                         |                      |                 |                         |                         |               |                           |                                        |                                     |                                          |                                        |                                 |

| 試験所<br>番号 | Ge検出器とγ線スペクトロメトリー検出効率に関する情報を記載する。                                               |                  |                                |  |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------|------------------|--------------------------------|--|--|--|--|--|--|
|           | <ul> <li>・感度係数(cps/Bq)を求めるために使用した標準線源名</li> <li>・「MX033U8PP,線源番号0211</li> </ul> |                  |                                |  |  |  |  |  |  |
|           | ・感度係数(cps/Bq)を求めるために使用                                                          | 検出効率 %           |                                |  |  |  |  |  |  |
|           | Cs-134                                                                          | 感度係数は求めていない,以下同じ | 605KeV 0.3503<br>796keV 0.2732 |  |  |  |  |  |  |
|           | Cs-137                                                                          |                  | 0.3229                         |  |  |  |  |  |  |
| 1         | K-40                                                                            |                  | 0.1577                         |  |  |  |  |  |  |
|           | ・定量に使用した感度係数                                                                    |                  |                                |  |  |  |  |  |  |
|           | Cs-134                                                                          |                  | 605KeV 0.3503<br>796keV 0.2732 |  |  |  |  |  |  |
|           | Cs-137                                                                          |                  | 0.3229                         |  |  |  |  |  |  |
|           | K-40                                                                            |                  | 0.1577                         |  |  |  |  |  |  |

#### 試験所 番号

2

|        |                                |        |       |             |       |             |       |             |       |         | 8.40E-03    | 3.2 |
|--------|--------------------------------|--------|-------|-------------|-------|-------------|-------|-------------|-------|---------|-------------|-----|
|        | Corrected Activity (2011) (Bq) |        |       |             |       | count       |       |             |       |         |             |     |
| Cs-134 | error                          | Cs-137 | error | Cs-134(605) | error | Cs-137(662) | error | Cs-134(796) | error |         | Cs-134(605) | e   |
| 0.96   | 0.03                           | 3.94   | 0.08  | 1,639       | 57    | 6,028       | 88    | 1,380       | 53    | 174,670 | 0.00938     | 0.0 |
| 1.11   | 0.03                           | 4.56   | 0.09  | 2,752       | 76    | 10,068      | 113   | 2,293       | 66    | 265,868 | 0.01035     | 0.0 |
| 1.19   | 0.03                           | 4.82   | 0.10  | 1,644       | 56    | 5,938       | 87    | 1,419       | 52    | 165,141 | 0.00996     | 0.0 |
| 1.32   | 0.04                           | 5.39   | 0.11  | 3.014       | 78    | 10.729      | 177   | 2.474       | 69    | 270 979 | 0.01112     | 0.0 |

| 験所<br>番号 |  |
|----------|--|
|          |  |
| 3        |  |
| 3        |  |

試験所 番号

4

| ・感度係数(cps/Bq)を求めるために使<br>用した標準線源名         | エネルギー依存性 : AEA Technology plc QCD1<br>2956QB |         |  |  |
|-------------------------------------------|----------------------------------------------|---------|--|--|
| <ul> <li>・感度係数(cps/Bq)を求めるために使</li> </ul> | を用した全ての核種の感度係数(cps/Bq)                       | 検出効率    |  |  |
| エネルギー依存性(9核種混合点線                          | [源]                                          |         |  |  |
| Cd-109                                    | 0.00153                                      | 0.0424  |  |  |
| Co-57                                     | 0.0358                                       | 0.0419  |  |  |
| Ce-139                                    | 0.0284                                       | 0.0355  |  |  |
| Hg-203                                    | 0.0184                                       | 0.0226  |  |  |
| Sn-113                                    | 0.0103                                       | 0.0160  |  |  |
| Sr-85                                     | 0.0123                                       | 0.0124  |  |  |
| Cs-137                                    | 0.00845                                      | 0.00992 |  |  |
| Y-88(898keV)                              | 0.00713                                      | 0.00758 |  |  |
| Y-88(1836keV)                             | 0.00401                                      | 0.00403 |  |  |
| Co-60(1173keV)                            | 0.00595                                      | 0.00596 |  |  |
| Co-60(1333keV)                            | 0.00535                                      | 0.00535 |  |  |
|                                           |                                              |         |  |  |
| 测定試料形状依存性( <sup>137</sup> Cs水容積           | <u>線源)</u>                                   |         |  |  |
| 6.37mm                                    | 0.0268                                       | 0.0315  |  |  |
| 10.94mm                                   | 0.0236                                       | 0.0278  |  |  |
| 21.54mm                                   | 0.0197                                       | 0.0232  |  |  |
| 30.79mm                                   | 0.0170                                       | 0.0199  |  |  |
| 40.96mm                                   | 0.0147                                       | 0.0173  |  |  |
| 50.22mm                                   | 0.0132                                       | 0.0155  |  |  |
| ・定量に使用した感度係数(cps/Bq)                      |                                              |         |  |  |
| Cs-134                                    | 0.00887                                      | 0.0104  |  |  |
| Cs-137                                    | 0.0110                                       | 0.0129  |  |  |
| К-40                                      | 0.000727                                     | 0.00680 |  |  |

|     |         | 1000.000   | 83.82             | 標準不確かさ(%) |             |  |  |  |
|-----|---------|------------|-------------------|-----------|-------------|--|--|--|
|     | T46     | 个種目号の愛問    | 記号                | 300keV 未满 | 300keV EL 1 |  |  |  |
|     |         | 样量         | u,                | 0.01      | 0.01        |  |  |  |
| 2   | 7112932 | 厚さの測定      | U <sub>2</sub>    | 0.45      | 0.45        |  |  |  |
|     |         | 校正用線際      | U3                | 3.1       | 2.0         |  |  |  |
|     |         | 幾何条件       | -                 |           |             |  |  |  |
| 1 1 | 不感時間    | -          |                   |           |             |  |  |  |
|     | 1       | 測定系の変動     | -                 |           |             |  |  |  |
|     | IR44'-  | 計数調差       |                   | 0.260     | 0.249       |  |  |  |
|     | 依存性     | 放出比        | us                | 2.77      | 0.320       |  |  |  |
|     |         | 校正式フィッティッグ | U.c.              | 1.4       | 0.63        |  |  |  |
|     | 1       | サム効果補正     | -                 |           |             |  |  |  |
|     | 1       | 自己吸収補正     | -                 |           |             |  |  |  |
|     | 1       | 減資補正       | Ug.               | 0.03      | 0.02        |  |  |  |
| 2   |         | 样量         | u <sub>a</sub> .  | 0.29      | 0.29        |  |  |  |
| Æ   |         | 厚さの測定      | u <sub>p</sub>    | 0.51      | 0.51        |  |  |  |
|     |         | 校正用線旗      | u <sub>se</sub>   | 1.5       | 1.5         |  |  |  |
|     | 1       | 幾何条件       | -                 |           |             |  |  |  |
|     |         | 不感時間       |                   |           |             |  |  |  |
|     | 依存性     | 測定系の変動     | -                 |           |             |  |  |  |
|     |         | 計数調差       | u <sub>ll</sub>   | 0.30      | 0.30        |  |  |  |
|     |         | 放出比        | u <sub>tz</sub>   | 0.235     | 0.235       |  |  |  |
|     |         | 校正式フィッテルグ  | un                | 0,57      | 0.57        |  |  |  |
|     |         | 自己吸収補正     | -                 |           |             |  |  |  |
|     |         | 減賣補正       | u <sub>ss</sub>   | 0.0004    | 0.0004      |  |  |  |
|     |         | 幾何条件       | -                 |           |             |  |  |  |
|     | 1       | 不感時間       |                   |           |             |  |  |  |
|     | 1       | 測定系の変動     | - W <sub>10</sub> | 2,89      | 2.89        |  |  |  |
|     |         | 計数調差       | - U <sub>10</sub> | 0.21      | 0.44        |  |  |  |
|     | 間定      | 放出比        | u <sub>17</sub>   | 2.77      | 2.65        |  |  |  |
|     | 1       | サム効果補正     | -                 |           |             |  |  |  |
|     | 1       | 自己吸収補正     | -                 |           |             |  |  |  |
|     |         | 減資補正       | .u.,              | 0.008     | 0.01        |  |  |  |
|     | 合成標     | 際不確かさ      | u,                | 6.22      | 4.84        |  |  |  |

|      | Cs-137 | 1.184E-01 Bq g-1 |
|------|--------|------------------|
|      |        | 7.8% u(k=2)      |
| てなかさ | Cs-134 | 9.085E-02 Bq g-1 |
| 个唯かさ |        | 6.9% u(k=2)      |
|      | K-40   | 4.077E-01 Bq g-1 |
|      |        | 7.4% u(k=2)      |
|      |        |                  |
|      |        |                  |
|      |        |                  |

|                   |             |            |                 |          | Efficier        | icy       |             |          |  |
|-------------------|-------------|------------|-----------------|----------|-----------------|-----------|-------------|----------|--|
|                   |             |            | Cs-134(605)     | error    | Cs-137(662)     | error     | Cs-134(796) | error    |  |
|                   |             |            | 9.74E-03        | 4.37E-04 | 8.75E-03        | 2.20E-04  | 8.20E-03    | 3.54E-04 |  |
|                   |             |            | 9.30E-03        | 3.69E-04 | 8.30E-03        | 1.94E-04  | 7.75E-03    | 2.75E-04 |  |
|                   |             |            | 8.34E-03        | 3.71E-04 | 7.46E-03        | 1.88E-04  | 7.20E-03    | 3.02E-04 |  |
|                   |             |            | <u>8.40E-03</u> | 3.25E-04 | <u>7.35E-03</u> | 1.93E-04  | 6.90E-03    | 2.37E-04 |  |
|                   |             | time (sec) |                 |          | count/se        | ec.       |             |          |  |
| 134(796)          | error       |            | Cs-134(605      | error    | Cs-137(662      | error     | Cs-134(796  | error    |  |
| 1,380             | 53          | 174,670    | 0.00938         | 0.00032  | 0.03451         | 0.00050   | 0.00790     | 0.00030  |  |
| 2,293             | 66          | 265,868    | 0.01035         | 0.00029  | 0.03787         | 0.00042   | 0.00862     | 0.00025  |  |
| 1,419             | 52          | 165,141    | 0.00996         | 0.00034  | 0.03596         | 0.00053   | 0.00859     | 0.00031  |  |
| 2,474             | 69          | 270,979    | 0.01112         | 0.00029  | 0.03959         | 0.00065   | 0.00913     | 0.00025  |  |
| Buda              | zet (       | Cs-137     | Budget          | Cs-134   | Budget          | K-4       | 40          |          |  |
| Cour              | nting       | 0.26%      | Counting        | 0.33%    | Counting        | 0.51%     |             |          |  |
| Back              | ground      | 0.02%      | Background      | 0.02%    | Backgro         | und       | 0.11%       |          |  |
| Repe              | eatability  | 0.09%      | Repeatability   | 0.11%    | Repeata         | bility    | 0.62%       |          |  |
| Sam               | pling       | 0.00%      | Sampling        | 0.00%    | Sampling        | r -       | 0.00%       |          |  |
| Dilut             | ion         | 0.35%      | Dilution        | 0.35%    | Dilution        |           | 0.35%       |          |  |
| IC C              | alb.        | 0.80%      | IC Calb.        | 0.60%    | IC Calb.        |           | 0.80%       |          |  |
| Half              | life        | 0.01%      | Half life       | 0.01%    | Half life       |           | 0.02%       |          |  |
| E. Ra             | ate         | 0.23%      | E. Rate         | 0.45%    | E. Rate         |           | 1.03%       |          |  |
| weig              | ing         | 0.01%      | weiging         | 0.01%    | weiging         |           | 0.01%       |          |  |
| time              |             | 0.10%      | time            | 0.10%    | time            |           | 0.10%       |          |  |
| Ge S              | Stability   | 0.22%      | Ge Stability    | 0.22%    | Ge Stabi        | lity      | 0.22%       |          |  |
| Ge C              | Calibration | 1.03%      | Ge Calibration  | 0.85%    | Ge Calib        | ration    | 1.03%       |          |  |
| Dens              | sity Corr.  | 2.45%      | Density Corr.   | 1.85%    | Density         | Corr.     | 1.60%       |          |  |
| Com               | pound Corr  | 0.58%      | Compound Corr   | 0.58%    | Compou          | nd Corr   | 0.58%       |          |  |
| 充填                | 高さ          | 2.63%      | 充填高さ            | 2.57%    | 充填高さ            | ç.        | 2.63%       |          |  |
|                   |             |            |                 |          | Efficienc       | y tracing | 0.58%       |          |  |
| Squa              | are Sum     | 3.91%      | Square Sum      | 3.45%    |                 | ,         |             |          |  |
| ,<br>U(k=2) 7.82% |             |            | U(k=2)          | 6.91%    | Square 3        | Sum       | 3.71%       |          |  |
|                   |             |            |                 |          | U(              | k=2)      | 7.41%       |          |  |
|                   |             |            |                 |          |                 |           |             |          |  |

23 / 67

| 試験所<br>番号 | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。                                                     | 核種                                   | 半減期(日)                        | エネルギー<br>(keV)                                    | 放出効率 %                                  | 測定時間<br>live time(秒)                      | 正味カウント数<br>N-Nb                              | バックグラウン<br>ドカウント数<br>Nb      | ピーク計<br>数率<br>(カウント<br>数/秒) | 測定時の放射能<br>Bq           | 供試品作製時<br>の 放<br>射能<br>Bq   | 供試品作製時の<br>放射能濃度<br>(Bq/kg)                           | 拡張不確かさ(k=2)<br>(Bq/kg)<br>均質性を評価した場<br>合 | 武科かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-     ハント数 ** | 試料がないと<br>きのバックグラ<br>ウンドカウント<br>数 Nb' *   | バックグラウンド<br>測定時間* 秒                       |                                                  |                                    |
|-----------|-----------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------|------------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------------------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------|------------------------------------|
|           | 本結果は指示書に基づきサンプルを一回測<br>定した結果です。試料を開封し、充てん及び<br>測定を数回繰り返し、試料の均質性の調査<br>を行いました。不確かさはこの均一性評価     | Cs-134                               | 754. 3                        | 個々のエネルギーを言<br>入する<br>605                          | 8 個々に記入する 97.62                         | 200000                                    | 25843                                        | 2142                         | 0.129                       | 11.21                   | 11.68                       | 86.5                                                  | 求め方は報告シート(不<br>確かさ)に記入する。<br>4.9         | -11                                                 | 606                                       | 200000                                    |                                                  |                                    |
|           | を含むものと、含まないもの、顧客との協定<br>により均質と仮定した評価)の2種類を提出<br>します。いずれを選択するかはお任せ致し                           | Cs-137                               | 10975. 5                      | 662                                               | 84. 99                                  | 200000                                    | 30975                                        | 1413                         | 0.155                       | 15.66                   | 15.71                       | 116                                                   | 求め方は報告シート(不<br>確かさ)に記入する。<br>7.2         | 38                                                  | 421                                       | 200000                                    |                                                  |                                    |
|           | よす。5月1日については、08タイノの谷森<br>(PP製)に4回詰め替えて測定し、その実験<br>標準偏差で評価した。密度は、08タイプの<br>容器へ充填する都度測定した。密度は、充 | K-40                                 | 4. 6E+11                      | 1461                                              | 10. 55                                  | 200000                                    | 7452                                         | 284                          | 0.037                       | 54.87                   | 54.87                       | 406                                                   | 求め方は報告シート(不<br>確かさ)に記入する。<br>34          | 573                                                 | 166                                       | 200000                                    | ł                                                |                                    |
|           | 填質量を充填容量で除することにより求めた。<br>・Cs-134<br>++ 4 効用端正右                                                |                                      | 上記項目<br>Cs-134:Evalu          | の出典を記入<br>uated Nuclear                           | して下さい<br>Structure Data<br>Cs-137、K-40: | <br>File, NNDC, B<br>TABLE DE RADIO       | Brookhaven National<br>DNUCLÉIDES 2007       | Laboratory(200               | 04年10月)                     |                         |                             |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
|           | ) イススペート<br>自己吸収補正有<br>- Cs-137<br>サム効果補正無                                                    |                                      |                               |                                                   |                                         |                                           |                                              |                              |                             |                         |                             |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
| 5         | 自己吸収補正有<br>・K−40<br>サム効果補正無                                                                   |                                      | 放射能濃度                         | 相対拡張不得                                            | -<br>雇かさU(k=2)                          | keV                                       | 質量減弱係数(cm2/g)                                | 線減弱係数(/c                     | sm)                         |                         |                             |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
|           | 自己吸収補正有<br>・ピーク効率校正時の各種補正<br>(Cs=134及びK=40では、ピーク効率を求め)                                        | 核種                                   | (Bq/g)                        | (%)                                               | ]                                       | 605                                       | 8.94.E-02                                    | 8.94.E-02                    |                             | 標準線源の媒質:水               |                             |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
|           | るために他の核種の効率を用いているため、サム効果が発生する核種についてはサ                                                         | Cd-109                               | 22.733                        | 3.1                                               | 4                                       | 662                                       | 8.58.E-02                                    | 8.58.E-02                    |                             | 密度:1.00g/cm3            |                             |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
|           | ム効果補止を行った。自己吸収補止は必要<br>な全ての核種で行った。)                                                           | <u>Ce-139</u><br>Cr-51               | 1.618                         | 2.1                                               |                                         | keV                                       |                                              | <u>3.81.E-02</u><br>線減弱係数(/c | sm)                         | <br> 測定試料の媒質:土地         |                             |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
|           |                                                                                               | Sr-85<br>Cs-137                      | 1.922<br>1.917                | 2.1<br>2.0                                        |                                         | 605<br>662                                | 7.92.E-02<br>7.60.E-02                       | 1.15.E-01<br>1.10.E-01       |                             | 密度:1.45g/cm3            |                             |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
|           |                                                                                               | <u>Mn-54</u><br>Y-88                 | 2.137<br>2.285                | 1.9<br>1.9                                        | -                                       | 1461                                      | 5.04.E-02                                    | 7.30.E-02                    | ļ                           |                         | <u> </u>                    |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
|           |                                                                                               | <u>しい。</u><br>上記の水溶液を<br>標準線源は、<br>格 | <br>EU8容器に充填し、標<br>複数の充填高さのもの | <u>1.0</u><br>【準線源とした。<br>)を製造して用し                | いた。                                     |                                           |                                              |                              |                             |                         |                             |                                                       |                                          |                                                     |                                           |                                           |                                                  |                                    |
| 試験所<br>番号 | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。                                                     | 核種                                   | 半減期                           | エネルギー                                             | 放出効率 %                                  | 測定時間<br>live time(秒)                      | 正味カウント数<br>N-Nb                              |                              | バックグ<br>ラウンドカ<br>ウント数<br>Nb | ピーク計数率<br>(カウント数/秒)     | 測定時の放射<br>能<br>Bq/g         |                                                       | 供試品作製時<br>の 放<br>射能<br>Bg/g              |                                                     | 供試品作製時<br>の放射能濃度<br>(Bq/kg)               | 拡張不確かさ<br>( <i>k=</i> 2)<br>(Bq/kg)       | 試料がないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>Nb' * | 試料がないときのバック<br>グラウンドカウント数 Nb'<br>* |
|           | Canberra GX2019 (S/N 03036329),<br>Canberra のGamma explorer(ソフト)を用い                           | Cs-134                               | Y                             | 個々のエネルギーを言<br>入する                                 | 個々に記入する                                 |                                           |                                              |                              |                             |                         |                             |                                                       | 1.0                                      |                                                     |                                           |                                           |                                                  |                                    |
|           | たピークを「10.3.2 荷重平均の計算」、放射<br>能測定法シリーズ7-ゲルマニウム半導体検<br>出器によるガンマ線スペクトロメトリー(H4改                    |                                      | 2. 06E+00                     | 475. 35                                           | 1. 47                                   | 100000                                    | 353.52                                       | 51.11                        | 1852.06                     | 0.0035352               | 2 1.10208E-01               | 1.59328E-02                                           | 2 1.14917E-01                            | 1.66135E-02                                         | 1.149E+02                                 | 1.661E+01                                 |                                                  |                                    |
|           | a] / 、p. 1302で参照                                                                              | Cs-134                               | Y<br>2. 06E+00                | 個々のエネルギーを<br>入する<br>563.26                        | ·<br>個々に記入する<br>8.38                    | 100000                                    | 1247.11                                      | 53.23                        | 1536.6                      | 0.0124711               | 8.10270E-02                 | 3.45814E-03                                           | 8.44889E-02                              | 3.65890E-03                                         | 8.449E+01                                 | 求め方は報告シート(不確か<br>さ)に記入する。<br>3.659E+00    |                                                  | 939                                |
|           |                                                                                               | Cs-134                               | Y<br>2. 06E+00                | 個々のエネルギーを書<br>入する<br>569.29                       | <sup>8</sup> 個々に記入する<br>15.43           | 100000                                    | 2205.92                                      | 61.5                         | 1247.26                     | 0.0220592               | 7.86849E-02                 | 2.18119E-03                                           | 8.20460E-02                              | 2.27438E-03                                         | 8.205E+01                                 | 2.274E+00                                 |                                                  |                                    |
|           |                                                                                               | Cs-134                               | Y<br>2. 06E+00                | 個々のエネルギーを音<br>入する<br>604.66                       | ·<br>個々に記入する<br>97.56                   | 100000                                    | 14788.44                                     | 127.47                       | 1080.54                     | 0.1478844               | 8.39576E-02                 | 7.23659E-04                                           | 8.75447E-02                              | 7.54577E-04                                         | 8.754E+01                                 | 求め方は報告シート(不確か<br>さ)に記入する。<br>7.546E-01    |                                                  | 1692                               |
|           |                                                                                               | Cs-134                               | Y<br>2. 06E+00                | 個々のエネルギーを書<br>入する<br>795.76                       | ·<br>個々に記入する<br>85.44                   | 100000                                    | 9988.15                                      | 104.52                       | 498.08                      | 0.0998815               | 6 8.16893E-02               | 8.54854E-04                                           | 8.51794E-02                              | 8.91378E-04                                         | 8.518E+01                                 | 求め方は報告シート(不確か<br>さ)に記入する。<br>8.914E-01    |                                                  | 559                                |
|           |                                                                                               | Cs-134                               | Y<br>2. 06E+00                | 個々のエネルギーを書<br>入する<br>801.84                       | ·<br>個々に記入する<br>8.73                    | 100000                                    | 929.05                                       | 39.24                        | 430.77                      | 0.0092905               | 5 7.60390E-02               | 3.21181E-03                                           | 7.92881E-02                              | 3.34904E-03                                         | 7.929E+01                                 | 求め方は報告シート(不確か<br>さ)に記入する。<br>3.349E+00    |                                                  | 570                                |
|           |                                                                                               | Cs-134                               | Y<br>2. 06E+00                | 個々のエネルギーを<br>入する<br>1167.86                       | · 個々に記入する<br>1.81                       | 100000                                    | 227.04                                       | 25.45                        | 364.17                      | 0.0022704               | 1.06335E-01                 | 1.19180E-02                                           | 1.10878E-01                              | 1.24271E-02                                         | 1.109E+02                                 | 1.243E+01                                 |                                                  |                                    |
|           |                                                                                               | Cs-134                               | Y<br>2. 06E+00                | 個々のエネルギーを言<br>入する<br>1365.13                      | <sup>3</sup> 個々に記入する<br>3.04            | 100000                                    | 305.22                                       | 21.62                        | 158.65                      | 0.0030522               | 9.24080E-02                 | 6.54541E-03                                           | 9.63561E-02                              | 6.82506E-03                                         | 9.636E+01                                 | 6.825E+00                                 |                                                  |                                    |
|           |                                                                                               | Cs-134                               |                               | 定量値(平均値など)<br>を記入する。求め方の<br>詳細は表紙のコメント<br>欄へ記載する。 |                                         |                                           |                                              |                              |                             |                         |                             |                                                       |                                          |                                                     | _                                         | 求め方は報告シート (不確か<br>さ) に記入する。               |                                                  |                                    |
| 6         |                                                                                               | Cs-137                               | Y                             |                                                   |                                         | 100000                                    |                                              |                              |                             |                         |                             |                                                       |                                          |                                                     | 8.620E+01                                 | 5.419E-01<br>求め方は報告シート (不確か<br>さ) に記入する。  | <u> </u>                                         |                                    |
|           |                                                                                               | K-40                                 | 3. 02E+01<br>Y                | 661.64                                            | 85. 1                                   | 100000                                    | 17818.29                                     | 137.39                       | 716.4                       | 0.1781829               | 1.163533E-01                | 8.985700E-04                                          | 1.168670E-01                             | 9.011430E-04                                        | 1.169E+02                                 | 9.011E-01<br>求め方は報告シート(不確か<br>さ)に記入する。    | <u> </u>                                         | 818                                |
|           |                                                                                               |                                      | <u>1.28E+09</u><br>上記項目の出典    | <u>1460.75</u><br>奥を記入して下                         | <u>10.7</u><br>さい                       | 100000                                    | 4012.8<br>関数適合法                              | <u>67.04</u><br>関数適合法        | <u>148.9</u><br>積算法         | 0.040128                | 4.104080E-01                | 6.856420E-03                                          | 4.104080E-01                             | 6.856420E-03                                        | 4.104E+02                                 | 6.856E+00                                 |                                                  | 407                                |
|           |                                                                                               |                                      | 放射能測定法ン                       | /                                                 |                                         |                                           | <u>                                     </u> | キャンヘランヤハ                     | シ、平成                        |                         | <u>  ? 緑解析フロクラ</u>          | 54(4+2775)                                            | ヤハン、平成15                                 | 牛)を用い(計昇)                                           | 。別紙─Ⅰ:放射                                  | <u> 能授昇係致一頁表</u>                          | <u> </u>                                         |                                    |
|           |                                                                                               | γ線解析プロ<br>(*)表-1:放射能                 | グラム(キャンベラジ・<br>能換算係数一覧        | ャパン、平成15                                          | 年)の関数適合法。                               | を用いて計算。                                   |                                              |                              | P 61-1-5                    |                         | 201 L                       | <u>ارە دى ج</u>                                       |                                          | ***                                                 |                                           |                                           | т                                                |                                    |
|           |                                                                                               | 拉话                                   | エネルキー                         | 放出効率                                              | <u>ヒーク効率</u><br><u> を</u> *             | 近似効率                                      | 目己吸収補止                                       | サム補止                         | <u>ークカウン</u><br>N           | <u>ヒークカウント誤差</u>        | γ線放出比<br>Iγ                 | <u>ビーク効率</u><br><u>ε</u>                              | <u>則定ライフタイ2</u><br>T                     | 感度係数<br>【γ*ε                                        |                                           | fの放射能                                     |                                                  |                                    |
|           |                                                                                               | <br>Cs−134                           | 475.35<br>563.26              | 1. 47<br>8. 38                                    | cps/ y ps<br>1.62194E-02<br>1.36049F-02 | 2 2.18149E-02<br>2 1.85988F-02            | 8.11012E-01<br>8.22287E-01                   | 9.16756E-01<br>8.89587F-01   | 353.52<br>1247 11           | 51.11                   | 7 / decay<br>0.015<br>0.084 | <u>cps/ 7 ps</u><br><u>1.62194E-02</u><br>1.36049F-02 | sec<br>100000<br>100000                  | 2.43291E-04                                         | <u>Dq/g</u><br>1.10208E-01<br>8.10270F-02 | 1.59328E-02<br>3.45814F-03                | 1                                                |                                    |
|           |                                                                                               |                                      | 569.29<br>604.66              | 15.43<br>97.56                                    | 1.34586E-02<br>1.33739E-02              | 2 1.84140E-02<br>2 1.74025E-02            | 8.22996E-01<br>8.27010E-01                   | 8.88084E-01<br>9.29254E-01   | 2205.92<br>14788.44         | 61.15<br><u>127</u> .47 | 0.154<br>0.976              | 1.34586E-02<br>1.33739E-02                            | 100000<br>100000                         | 2.07262E-03<br>1.30529E-02                          | 7.86849E-02<br>8.39576E-02                | 2.18119E-03<br>7.23659E-04                |                                                  |                                    |
|           |                                                                                               |                                      | 795.76<br>801.84              | 85. 44<br>8. 73                                   | 1.06005E-02<br>1.03669E-02              | 2 1.34663E-02<br>2 1.33712E-02            | 8.45218E-01<br>8.45719E-01                   | 9.31339E-01<br>9.16756E-01   | 9988.15<br>929.05           | 104.52<br>39.24         | 0.854                       | 1.06005E-02<br>1.03669E-02                            | 100000<br>100000                         | 9.05279E-03<br>9.01923E-04                          | 8.16893E-02<br>7.60394E-02                | 8.54854E-04<br>3.21181E-03                | 4                                                |                                    |
|           |                                                                                               | Cc-127                               | 1167.86<br>1365.13<br>661.64  | 1.81<br>3.04                                      | 8.76232E-03<br>8.04828E-03              | 9.43729E-03<br>8.17369E-03<br>1.50062E-02 | 8.69965E-01<br>8.79637E-01<br>8.33001E-01    | 1.06726E+00<br>1.11939E+00   | 227.04<br>305.22            | 25.45                   | 0.018                       | 8.76232E-03<br>8.04828E-03<br>1.33249E-02             | 100000<br>100000<br>100000               | 1.57722E-04<br>2.41448E-04<br>1.13262E-02           | 1.06335E-01<br>9.24080E-02<br>1.16532E-01 | 1.19180E-02<br>6.54541E-03<br>8.98570E-04 | ł                                                |                                    |
|           |                                                                                               | <u>K-40</u><br>ミ*: 近似効Σ              | <u>1460.75</u><br>率x自己吸収補正xサ  | <u>10.7</u>                                       | 6.78788E-03                             | 7.68084E-03                               | 8.83742E-01                                  | 1.00000E+00                  | 4012.80                     | 67.04                   | 0.850                       | 6.78788E-03                                           | 100000                                   | 7.26303E-04                                         | 4.10408E-01                               | 6.85642E-03                               | t                                                |                                    |

<u>ε</u>\*: 近似効率x自己吸収補正xサム補正

24 / 67

| 試験所 |
|-----|
| 番号  |

| ・Ge検出器の相対効率           | 23%                   |       |                              |
|-----------------------|-----------------------|-------|------------------------------|
| ・検出効率(cps/Bq)を求め      | るために使用した標準線源名         | 9核種混合 | 放射能標準ガンマ体積線源(U8タイプ) 媒質:<br>水 |
| ・検出効率(cps/Bq)を求めるために使 | 用した全ての核種の検出効率(cps/Bq) |       |                              |
| Cs-134                | 省略                    |       |                              |
| Cs-137                | 省略                    |       |                              |
| K-40                  | 省略                    |       |                              |
| ・定量に使用した検出効率(cps/Bq)  |                       |       |                              |
| Cs-134                | 1.154E-2(605keV)      |       |                              |
| Cs-137                | 9.877E-3(662keV)      |       |                              |
| K-40                  | 6.268E-4(1461keV)     |       |                              |
|                       | •                     | 4     |                              |

| 不確かさの要因             | Туре | 相対標準偏差(%)          |                    |                   |  |  |  |  |  |
|---------------------|------|--------------------|--------------------|-------------------|--|--|--|--|--|
|                     |      | Cs-134<br>(605keV) | Cs-137<br>(662keV) | K-40<br>(1461keV) |  |  |  |  |  |
| 計数統計                | А    | 0.70               | 0.61               | 1.38              |  |  |  |  |  |
| ピーク効率校正             | В    | 1.62               | 1.33               | 1.49              |  |  |  |  |  |
| 減衰補正                | В    | < 0.1              | < 0.1              | < 0.1             |  |  |  |  |  |
| 校正位置の再<br>現性        | В    | < 0.1              | < 0.1              | < 0.1             |  |  |  |  |  |
| ガンマ線放出<br>割合        | В    | 0.11               | 0.24               | 0.95              |  |  |  |  |  |
| 均質性                 | В    | 1.97               | 2.61               | 3.50              |  |  |  |  |  |
| 自己吸収補正              | В    | 0.81               | 0.72               | 0.50              |  |  |  |  |  |
| カスケードサム<br>効果補正     | В    | 0.70               | 0.00               | 0.00              |  |  |  |  |  |
|                     |      |                    |                    |                   |  |  |  |  |  |
| 相対合成標準<br>不確かさ(k=1) |      | 2.9                | 3.1                | 4.2               |  |  |  |  |  |
|                     |      |                    |                    |                   |  |  |  |  |  |
| 相対拡張不確<br>かさ(k=2)   |      | 5.71               | 6.18               | 8.36              |  |  |  |  |  |

| 不確かさの要因             | Туре | 相対標準偏差(%)          |                    |                   |  |  |  |  |  |
|---------------------|------|--------------------|--------------------|-------------------|--|--|--|--|--|
|                     |      | Cs−134<br>(605keV) | Cs−137<br>(662keV) | K−40<br>(1461keV) |  |  |  |  |  |
| 計数統計                | А    | 0.70               | 0.61               | 1.38              |  |  |  |  |  |
| ピーク効率校正             | В    | 1.62               | 1.33               | 1.49              |  |  |  |  |  |
| 減衰補正                | В    | < 0.1              | < 0.1              | < 0.1             |  |  |  |  |  |
| 校正位置の再<br>現性        | В    | < 0.1              | < 0.1              | < 0.1             |  |  |  |  |  |
| ガンマ線放出<br>割合        | В    | 0.11               | 0.24               | 0.95              |  |  |  |  |  |
| 自己吸収補正              | В    | 0.81               | 0.72               | 0.50              |  |  |  |  |  |
| カスケードサム<br>効果補正     | В    | 0.70               | 0.00               | 0.00              |  |  |  |  |  |
|                     |      |                    |                    |                   |  |  |  |  |  |
| 相対合成標準<br>不確かさ(k=1) |      | 2.1                | 1.6                | 2.3               |  |  |  |  |  |
|                     |      |                    |                    |                   |  |  |  |  |  |
| 相対拡張不確<br>かさ(k=2)   |      | 4.1                | 3.3                | 4.6               |  |  |  |  |  |

| ・感度係数(cps/Bq)を求めるために使用<br>した標準線源名                                   | 放射能標準ガ<br>プ協会                   | ジンマ線体積線源(アルミナ)、日本アイソトー                                                                                                                                     |
|---------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>・感度係数(cps/Bq)を求めるために使用し</li> <li>種の感度係数(cps/Bq)</li> </ul> | た全ての核                           | 検出効率 %                                                                                                                                                     |
| Cs-134                                                              | 表1:放射能<br>換算係数一<br>覧表(*)を参<br>照 | 1.622 (475.35keV), 1.360(563.26keV), 1.346<br>(569.29keV),1.337(604.66keV),<br>1.060(795.76keV), 1.037(801.84keV),<br>0.876(1167.86keV), 0.805(1365.13keV) |
| Cs-137                                                              | 0.001132619                     | 1.332                                                                                                                                                      |
| K-40                                                                | 0.000726303                     | 0.679                                                                                                                                                      |
| ・定量に使用した感度係数(cps/Bq)                                                |                                 |                                                                                                                                                            |
| Cs-134                                                              | 表1:放射能換                         | 算係数一覧表(*)を参照                                                                                                                                               |
| Cs-137                                                              | 0.001132619                     |                                                                                                                                                            |
| K-40                                                                | 0.000726303                     |                                                                                                                                                            |

|   | 試験所<br>番号 | 測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|---|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Ī |           | キャンベラISOCSによる効率計算の前提は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 使用検出器:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ge-P6:キャンベ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ラ GC-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 8 (11037695)                                                                                                                                             |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | 添付資料目を参照。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NBG 測定日:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012 年 3 月 4 日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16:30:08 LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 86401.8sec, RT                                                                                                                                           | : 86410. 8sec                                                              |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 試料測定日:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2012年3月5日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16:33:06 LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 82706.1sec, RT                                                                                                                                           | : 82727.5sec                                                               |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 効率計算:キ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ・ャンベラ ISOCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 試料重量:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 十壤試料比重                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·· 1 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | サム効果補正                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | バックグラウ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ンド差し引き                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/1に減衰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 補正                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 定量結里(Ba/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            | J                                                                       |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   | 7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | た主宅木 (54)<br>Ce-134 · 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | × + 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            | Ļ                                                                       | 共同実験結果。                                                                      | として採用                                                                                              |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ce=137 · 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K_40 · 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            | J                                                                       |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | RI協会のU8標準線源(9核種混合線源)で校                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K-40: 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | 正。こちらではCo-60とY-88のサム効果の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>佑田</b> 烇山哭,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M_13100_P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | 補止もしていないので、IMeV以上では計数<br>効率曲線が落ちていると思われる。したがっ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 使用使山谷:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1E·E0·07 IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 000aaa DT                                                                                                                                              | 100 000000                                                                 |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | て、定量結果は高くなる可能性がある。K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NDU 測定日:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012年3月7日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10:40:51 LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100,000sec, RT                                                                                                                                             | 100,009Sec                                                                 |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | われる。添付資料4に検出器(Ge-P6:キャン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 試科測正日:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2012年3月8日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.43.51 LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 100,000sec, RI                                                                                                                                           | : 100, 018. 4sec                                                           | ;                                                                       |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | ベラGC-2518)について、U8線源で求めたも<br>のと、ISOCS/LabSOCSで計算した効率曲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 正里柏未(Dq/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6-134 1 611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | 線を比較して示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0- 107 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /4K8V:/2.0 ± 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U. 9. 795Kev 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | 線を比較して示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cs-137 : 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.697.72.6 ± 0<br>06 ± 1<br>→ 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U. 9. 795Kev 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                            |                                                                         |                                                                              |                                                                                                    |                                                                     |                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                  |
|   |           | 線を比較して示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cs-137 : 10<br>K-40 : 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06 ± 1<br>± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J. 9, 795884 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ··· 2 · 1. 1                                                                                                                                               | 1                                                                          |                                                                         | バックグラウン                                                                      | ヒーク計                                                                                               |                                                                     | 供試品作製時                                                                    | 世話日作創時の                                                                                    | 城ででないさ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 試料かないと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 試料かないと                                                                                                                                                                                                                         |                                                                                                                                                  |
|   | 試験所       | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の方無など、校正・測定方法を付記する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | os=134:00<br>Cs=137: 10<br>K-40: 438<br>核種                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAREV.72.0 ± 0<br>6 ± 1<br>± 11<br>半減期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J. 9、795K9V 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 放出効率 %                                                                                                                                                     | 測定時間<br>live time(孙)                                                       | 正味カウント数                                                                 | バックグラウン<br>ドカウント数                                                            | ビーク計<br>数率<br>(カウント                                                                                | 測定時の放射能                                                             | (供試品作製時<br>の 放<br>射能                                                      | 供試品作製時の<br>放射能濃度                                                                           | 拡張不確かさ<br>(k=2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 試料かないと<br>  きの正味バッ<br>  クグラウンドカ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 試料かないと<br>きのバックグラ<br>ウンドカウント                                                                                                                                                                                                   | バックグラウンド<br>測定時間* 秒                                                                                                                              |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | os=134:00<br>Cs=137: 10<br>K−40: 438<br>核種                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /6 ± 1<br>± 11<br>半減期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | エネルギー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 放出効率 %                                                                                                                                                     | 測定時間<br>live time(秒)                                                       | 正味カウント数<br>N-Nb                                                         | バックグラウン<br>ドカウント数<br>Nb                                                      | ビーク計<br>数率<br>(カウント<br>数/秒)                                                                        | 測定時の放射能<br>Bq                                                       | 供試品作製時<br>の 放<br>射能<br>Bo                                                 | 供試品作製時の<br>放射能濃度<br>(Bq/kg)                                                                | 拡張不確かさ<br>( <i>k=</i> 2)<br>(Bq/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 試料かないど<br>きのバックグラ<br>ウンドカウント<br>数 Nb <sup>,*</sup>                                                                                                                                                                             | バックグラウンド<br>測定時間* 秒                                                                                                                              |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cs-134: 00<br>Cs-137: 10<br>K-40: 438<br>核種<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /6 ± 1<br>± 11<br>半減期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | エネルギー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 放出効率 %<br>個々に記入する                                                                                                                                          | 測定時間<br>live time(秒)                                                       | 正味カウント数<br>N-Nb                                                         | バックグラウン<br>ドカウント数<br>Nb                                                      | ビーク計<br>数率<br>(カウント<br>数/秒)                                                                        | 測定時の放射能<br>Bq                                                       | 供試品作製時<br>の 放<br>射能<br>Ro                                                 | 供試品作製時の<br>放射能濃度<br>(Bq/kg)                                                                | b<br>拡張不確かさ<br>(k=2)<br>(Bq/kg)<br>求め方は贈書シート(不<br>確かさ)に記入する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'ー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 試料かないと<br>きのバックグラ<br>ウンドカウント<br>数 Nb <sup>,*</sup>                                                                                                                                                                             | バックグラウンド<br>測定時間 <sup>*</sup> 秒                                                                                                                  |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cs-134: 00<br>Cs-137: 10<br>K-40: 438<br>核種<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2. 062Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | エネルギー<br>個々のエネルギーを記<br>569.32keV<br>個々のエキルギーを記                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 放出効率 %<br><sup>個々に記入する</sup><br>15.43                                                                                                                      | 測定時間<br>live time(秒)<br>36000                                              | 正味カウント数<br>N-Nb<br>814.5                                                | バックグラウン<br>ドカウント数<br>Nb<br>450.9                                             | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625                                                            | 測定時の放射能<br>Bq<br>10.41                                              | 供試品作製時<br>の 放<br>射能<br>Ba<br>10.66                                        | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94                                                       | <ul> <li>拡張不確かさ<br/>(k=2)<br/>(Bq/kg)</li> <li>求め方は報告シート(不<br/>確かさ)に起入する。</li> <li>6.842</li> <li>まの方は報告シート(不</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 試料がないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>試料かないど</li> <li>きのバックグラ</li> <li>ウンドカウント</li> <li>※ Nb.'*</li> <li>73.8</li> </ul>                                                                                                                                    | バックグラウンド<br>測定時間* 秒<br>24000                                                                                                                     |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法は以下の通り。<br>・2L体積標準線源を用い、エネルギー校                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cs-134. 00<br>Cs-137: 10<br>K-40: 438<br>核種<br>Cs-134<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 ± 1<br>± 11<br>半減期<br><u>2.062Y</u><br>2.062Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | エネルギー<br><sup>個々のエキルギーを記<br/>569.32keV<br/><sup>個々のエキルギーを記<br/>569.32keV<br/><sup>個々のエキルギーを記<br/>569.70keV</sup></sup></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 放出効率 %<br><sup>個々に記入する</sup><br>15.43<br><sup>個々に記入する</sup><br>97.60                                                                                       | 測定時間<br>live time(秒)<br>36000<br>36000                                     | 正味カウント数<br>N-Nb<br>814.5<br>5236.8                                      | バックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6                                    | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467                                                | 測定時の放射能<br>Bq<br>10.41<br>10.64                                     | 供試品作製時<br>の 放<br>射能<br>10.66<br>10.90                                     | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71                                              | 拡張不確かさ<br>(k=2)<br>(Bq/kg)<br>求め方は報告シート(不<br>確かさ)に起入する。<br>を.842<br>求め方は報告シート(不<br>確かさ)に起入する。<br>2,352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 試料かないと<br>きのバックグラ<br>ウンドカウント<br>数7 Nb <sup>・*</sup><br>73.8                                                                                                                                                                    | バックグラウンド<br>測定時間*秒<br>24000<br>24000                                                                                                             |
|   | 試験所番号     | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法と以下の通り。<br>・2L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cs-134 . 00<br>Cs-137 : 10<br>K-40 : 438<br>核種<br>Cs-134<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /6 ± 1<br>± 11<br>半減期<br><u>2.062Y</u><br><u>2.062Y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | エネルギー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する                                                                                                  | 測定時間<br>live time(秒)<br>36000<br>36000                                     | 正味カウント数<br>N-Nb<br>814.5<br>5236.8                                      | バックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6                                    | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467                                                | 測定時の放射能<br>Bq<br><u>10.41</u><br>10.64                              | 供試品作製時<br>の放<br>射能<br>10.66<br>10.90                                      | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71                                              | 拡張不確かさ<br>(k=2)<br>(Bq/kg)<br>来め方は報告シート(7<br>確かさ)に思えする。<br>6.842<br>来の方は報告シート(7<br>確かさ)に思えする。<br>2.352<br>来の方は報告シート(7<br>その方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方に報告シート(7)<br>来の方にもの方の。<br>日本(1)<br>来の方に報告シート(7)<br>来の方にもの方の。<br>日本(1)<br>来の方にもの方の。<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1)<br>日本(1 | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 試料がないと<br>きのバックグラ<br>ウンドカウント<br><u>米r Nb'</u> *<br>73.8<br>78.1                                                                                                                                                                | バックグラウンド<br>測定時間 <sup>*</sup> 秒<br>24000<br>24000                                                                                                |
|   | 試験所番号     | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法><br>校正方法とい下の通り。<br>・24体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正<br>を実施する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cs-134 . 00<br>Cs-137 : 10<br>K-40 : 438<br>核種<br>Cs-134<br>Cs-134<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72.0 ± 1<br>± 11<br>半減期<br><u>2.062Y</u><br><u>2.062Y</u><br><u>2.062Y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | エネルギー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40                                                                                         | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000                            | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1                            | バックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6                                    | ビーク計<br>数率<br>(カウント<br>数/か)<br>0.022625<br>0.145467<br>0.103558                                    | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11                            | 供試品作製時<br>の 放<br>射能<br>10.66<br>10.90                                     | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28                                     | 拡張不確かさ<br>(k=2)<br>(Bq/kg)           求め方は報告シート(不<br>確かさ)に起入する。           ・         6.842           求め方は報告シート(不<br>確かさ)に記入する。           ・         2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           まめ方に報告シート(不<br>確かさ)に記入する。           2.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 試料がないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2<br>12.9<br>-4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>試料かないと</li> <li>きのバックグラ</li> <li>ウンドカウント</li> <li>** Nb'*</li> <li>73.8</li> <li>78.1</li> <li>57.8</li> </ul>                                                                                                        | バックグラウンド<br>測定時間*秒<br>24000<br>24000<br>24000                                                                                                    |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法は以下の通り。<br>・2L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正<br>を実施する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cs-134 . Co<br>Cs-137 : 10<br>K-40 : 438<br>核種<br>Cs-134<br>Cs-134<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 ± 1<br>± 11<br>半減期<br>2.062Y<br>2.062Y<br>2.062Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | エネルギー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する                                                                              | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000                            | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1                            | パックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7                           | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558                                    | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11                            | 供試品作製時<br>の放射能<br>Bo<br>10.66<br>10.90<br>11.38                           | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28                                     | 拡張不確かさ<br>(k=2)<br>(Bq/kg)           求め方は報告シート(不<br>確かさ)に記入する。           6.842           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.85           求め方は報告シート(死<br>確かさ)に記入する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N-<br>12.2<br>12.9<br>-4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 試料かないぞ<br>きのバックグラ<br>ウンドカウント<br><u>数 Nb<sup>.*</sup></u><br>73.8<br>78.1                                                                                                                                                       | バックグラウンド<br>測定時間*秒<br>24000<br>24000<br>24000                                                                                                    |
|   | 試験所番号     | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法は以下の通り。<br>・2L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正<br>を実施する。<br>・検正の際、自己吸収補正及びサム補正<br>を実施する。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用い入)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cs-134 . 00<br>Cs-137 : 10<br>K-40 : 438<br>核種<br>Cs-134<br>Cs-134<br>Cs-134<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 ± 1<br>± 11<br>半減期<br><u>2.062Y</u><br><u>2.062Y</u><br><u>2.062Y</u><br><u>2.062Y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | エネルギー<br>個々のエキルギーを記<br>入する<br>604.70keV<br>個々のエネルギーを記<br>入する<br>604.70keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>801.93keV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>85.73                                                                     | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000<br>36000                   | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373                     | パックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8                  | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558<br>0.010361                        | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13                   | 供試品作製時<br>の放射能<br>10.66<br>10.90<br>11.38<br>11.40                        | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41                            | 拡張不確かさ<br>(k=2)<br>(Bq/kg)           求め方は報告シート(不<br>確かさ)に記入する。           6.842           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.85           求め方は報告シート(不<br>確かさ)に記入する。           10.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2<br>12.9<br>-4.8<br>12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 試料かないと<br>きのバックグラ<br>ウンドカウント<br><u>米</u> r NI <sub>b</sub> ・*<br>73.8<br>78.1<br>57.8<br>50.4                                                                                                                                  | バックグラウンド<br>測定時間 <sup>*</sup> 秒<br>24000<br>24000<br>24000<br>24000                                                                              |
|   | 試験所番号     | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法><br>校正方法は以下の通り。<br>・2.4体積標準線源を用い、エネルギー校<br>正を実施する。<br>・校正の際、自己吸収補正及びサム補正<br>を実施する。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用いる)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cs-134 . Co<br>Cs-137 : 10<br>K-40 : 438<br>核種<br>Cs-134<br>Cs-134<br>Cs-134<br>Cs-134<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2. 062Y<br>2. 062Y<br>2. 062Y<br>2. 062Y<br>2. 062Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | エネルギー<br>個々のエネルギーを記<br>569.32keV<br>個々のエネルギーを記<br>入する<br>604.70keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>定量値(平均値など)<br>を記入する。来めのマメント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>8.73                                                                      | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000                            | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373                     | バックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8                  | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558<br>0.010361                        | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13                   | 供試品作製時<br>の放射能<br>10.66<br>10.90<br>11.38<br>11.40                        | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41                            | 拡張不確かさ<br>(k=2)<br>(Bq/kg)           求め方は報告シート(不<br>確かさ)に起入する。           8.842           求め方は報告シート(不<br>確かさ)に起入する。           2.352           求め方は報告シート(不<br>確かさ)に起入する。           2.85           求め方は報告シート(不<br>確かさ)に起入する。           10.83           求め方は報告シート(不<br>確かさ)に起入する。           10.83           求め方は報告シート(不<br>確かさ)に起入する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2<br>12.9<br>-4.8<br>12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 試料がないと<br>きのバックグラ<br>ウンドカウント<br><u>米r NI-</u> *<br>73.8<br>78.1<br>57.8<br>50.4                                                                                                                                                | バックグラウンド<br>測定時間 <sup>*</sup> 秒<br>24000<br>24000<br>24000<br>24000                                                                              |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ケルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法とい下の通り。<br>・2L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・積正の際、自己吸収補正及びサム補正<br>を実施する。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用いる)<br><別定方法><br>放射能濃度の計算方法は以下の通り。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cs-134       00         K-40:       438         核種       0         Cs-134       0 | 6 ± 1<br>± 11<br>半減期<br>2.062Y<br>2.062Y<br>2.062Y<br>2.062Y<br>2.062Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | エネルギー           個々のエネルギーを記入する           569.32keV           個々のエネルギーを記入する           604.70keV           個々のエネルギーを記入する           795.85keV           個々のエネルギーを記入する           801.93keV           定職値(平均値など)           801.93keV           定記(本のエネルギーを記<br>入する           604.70keV           個々のエネルギーを記<br>入する           604.70keV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>85.73                                                                     | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000<br>36000                   | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373                     | バックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8                  | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558<br>0.010361                        | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13                   | 供試品作製時<br>の放射能<br>Ba<br>10.66<br>10.90<br>11.38<br>11.40                  | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41<br>80.71                   | 拡張不確かさ<br>(k=2)<br>(Bq/kg)           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.85           求め方は報告シート(不<br>確かさ)に記入する。           10.83           求め方は報告シート(不<br>確かさ)に記入する。           2.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 試料がないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>試料がないと<br/>きのバックグラ<br/>ウンドカウント</li> <li>ガロント</li> <li>73.8</li> <li>78.1</li> <li>57.8</li> <li>50.4</li> <li>78.1</li> </ul>                                                                                         | バックグラウンド<br>測定時間 <sup>*</sup> 秒<br>24000<br>24000<br>24000<br>24000<br>24000                                                                     |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法と<br>やな正方法は以下の通り。<br>・2L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正<br>を実施する。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用いる)<br><測定方法><br>放射能濃度の計算方法は以下の通り。<br>-①求めるピークを含むスペクトルを「ベー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cs-134 . Co<br>Cs-137 : 10<br>K-40 : 438<br>核種<br>Cs-134<br>Cs-134<br>Cs-134<br>Cs-134<br>Cs-134<br>Cs-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 ± 1<br>± 11<br>半減期<br>2.062Y<br>2.062Y<br>2.062Y<br>2.062Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | エネルギー         個々のエネルギーを記入する         569.32keV         個々のエネルギーを記入する         604.70keV         個々のエネルギーを記入する         801.93keV         空運賃(平均値など)         宇福公をジェッカ方の         詳細は気候のコメント         御へ記載する         604.70keV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>85.73                                                                     | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000                            | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373                     | パックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8                  | ビーク計<br>数率<br>(カウント<br>数/か)<br>0.022625<br>0.145467<br>0.103558<br>0.010361                        | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13                   | 供試品作製時<br>の放射能<br>Bo<br>10.66<br>10.90<br>11.38<br>11.40                  | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41<br>80.71                   | 拡張不確かさ<br>(k=2)<br>(Bq/kg)<br>求め方は報告シート(不<br>確かさ)に起入する。<br>6.842<br>求め方は報告シート(不<br>確かさ)に起入する。<br>2.352<br>求め方は報告シート(不<br>確かさ)に起入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に起入する。<br>10.83<br>求め方は報告シート(不<br>確かさ)に起入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に起入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に起入する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウンド数 N'-<br>12.2<br>12.9<br>-4.8<br>12.6<br>12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 試料かないと<br>きのバックグラ<br>ウンドカウント<br>数 Nb <sup>·*</sup><br>73.8<br>78.1<br>57.8<br>50.4<br>78.1                                                                                                                                     | バックグラウンド<br>測定時間*秒<br>24000<br>24000<br>24000<br>24000<br>24000                                                                                  |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法は以下の通り。<br>・2L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正<br>を実施する。<br>・検正の際、自己吸収補正及びサム補正<br>を実施する。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用いる)<br><測定方法><br>放射能濃度の計算方法は以下の通り。<br>①求めるピークを含むスペクトルを「ベー<br>ス関数」及び「ガウス関数」の近似式より、ピーク面積                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cs-134       10         K-40:       438         核種       Cs-134         Cs-134       Cs-134                                                                                                                                                                                                                                                                                                                                                                | 6 ± 1<br>± 11<br>半減期<br>2.062Y<br>2.062Y<br>2.062Y<br>2.062Y<br>2.062Y<br>30.00Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | エネルギー<br>個々のエキルギーを記<br>入する<br>569.32keV<br>個々のエキルギーを記<br>入する<br>795.85keV<br>個々のエキルギーを記<br>入する<br>795.85keV<br>個々のエキルギーを記<br>入する<br>801.93keV<br>瘤々のエキルギーを記<br>したる<br>801.93keV<br>差徴でのエキルギーを記<br>のテムギート<br>第個は変更の<br>差徴の<br>第個は変更の<br>差徴の<br>第個の<br>第個の<br>第個の<br>たても<br>の<br>58keV<br>個々のエキルギーを記<br>したる<br>801.93keV<br>第個の<br>28keV<br>個々のエキルギーを記<br>したる<br>804.70keV<br>604.70keV<br>661.66keV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>8.73<br>85.21                                                             | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000<br>36000                   | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373<br>6334.2           | パックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8<br>329.0         | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558<br>0.010361                        | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13<br>14.80          | 供試品作製時<br>の放射能<br>10.66<br>10.90<br>11.38<br>11.40                        | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41<br>80.71<br>109.8          | 拡張不確かさ<br>(k=2)<br>(Bq/kg)<br>求め方は報告シート(不<br>確かさ)に記入する。<br>6.842<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求め方は報告シート(不<br>確かさ)に記入する。<br>10.83<br>求め方は報告シート(不<br>確かさ)に記入する。<br>10.83<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>来め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>来め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>来の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>来の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>来の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>来の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>来の方は報告シート(不<br>確かさ)に記入する。<br>2.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2<br>12.9<br>-4.8<br>12.6<br>12.9<br>12.9<br>12.9<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 試料かないと<br>きのバックグラ<br>ウンドカウント<br><u>*</u> #r NI <sub>b</sub> :*<br>73.8<br>78.1<br>57.8<br>50.4<br>78.1<br>68.0                                                                                                                 | バックグラウンド<br>測定時間*秒<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000                                                                         |
|   | 試験所       | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法は以下の通り。<br>・2.L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正<br>を実施する。<br>・校正の際、自己吸収補正及びサム補正<br>を実施する。<br>・校正の際、自己吸収補正及びサム補正<br>を実施する。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用いる)<br><測定方法><br>放射能濃度の計算方法は以下の通り。<br>①求めるピークを含むスペクトルを「ベー<br>ス関数」及び「ガウス関数」に近似させる。<br>②「ガウス関数」の近似式より、ピーク面積<br>を算出する。(ビークがガウス関数」に通合し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cs-134       00         K-40:       438         核種       0         Cs-134       0         Cs-134       0         Cs-134       0         Cs-134       0         Cs-134       0         Cs-134       0         K-134       0         Cs-134       0         Cs-137       0         K-40       0                                                                                                                                                                                            | <pre>// Let 20 1 1 1 2 2 0 6 ± 1 1 1 2 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 2 0 6 2 Y 1 2 0 7 × 10<sup>9</sup> Y 1 2 7 7 × 10<sup>9</sup> Y 1 2 7 7 × 10<sup>9</sup> Y</pre>                                                                                                                                                                                                                                                                     | エネルギー<br>個々のエネルギーを記<br>入する<br>569.32keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>604.70keV<br>を記し.93keV<br>を記のスシント<br>欄へ記載する。<br>604.70keV<br>661.66keV<br>1460.75keV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>8.73<br>85.21<br>10.67                                                    | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000<br>36000<br>36000          | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373<br>6334.2<br>1479.1 | バックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8<br>329.0<br>36.9 | ビーク計<br>数で<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558<br>0.010361<br>0.17595<br>0.041086 | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13<br>14.80<br>52.31 | 供試品作製時<br>の放射能<br>10.66<br>10.90<br>11.38<br>11.40<br>14.83<br>52.31      | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41<br>80.71<br>109.8<br>387.5 | 拡張不確かさ<br>(k=2)<br>(Bq/kg)           求め方は報告シート(不<br>確かさ)に記入する。           6.842           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.85<br>8.00万は報告シート(不<br>確かさ)に記入する。           10.83           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.454           求の方は報告シート(不<br>確かさ)に記入する。           2.4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2<br>12.9<br>12.6<br>12.6<br>12.9<br>12.9<br>12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>試料かないときのバックグラ<br/>ウンドカウント</li> <li>ガロント</li> <li>73.8</li> <li>78.1</li> <li>57.8</li> <li>50.4</li> <li>78.1</li> <li>68.0</li> <li>15.8</li> </ul>                                                                  | バックグラウンド<br>測定時間 <sup>*</sup> 秒<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000                                                   |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><th>CS=134       00         CS=137       10         K=40:       438         核種       05-134         CS=134       05-134         CS=134       05-134         CS=134       05-134         CS=134       05-134         CS=134       05-134         CS=137       05-137         K=40       05-137</th> <th><pre>// Lit 277 × 10<sup>9</sup>Y</pre></th> <th>エネルギー<br/>個々のエネルギーを記<br/>入する<br/>569.32keV<br/>個々のエネルギーを記<br/>入する<br/>604.70keV<br/>個々のエネルギーを記<br/>入する<br/>795.85keV<br/>個々のエネルギーを記<br/>801.93keV<br/>定量値(平均値など)<br/>604.70keV<br/>661.66keV<br/>1460.75keV<br/>の出典を記入する</th> <th>放出効率 %<br/>個々に起入する<br/><u>15.43</u><br/>個々に起入する<br/><u>97.60</u><br/>個々に起入する<br/><u>85.40</u><br/>個々に起入する<br/><u>8.73</u><br/><u>85.21</u><br/><u>10.67</u><br/>こて下さい</th> <th>測定時間<br/>live time(秒)<br/>36000<br/>36000<br/>36000<br/>36000<br/>36000</th> <th>正味カウント数<br/>N-Nb<br/>814.5<br/>5236.8<br/>3728.1<br/>373<br/>6334.2<br/>1479.1</th> <th>バックグラウン<br/>ドカウント数<br/>Nb<br/>450.9<br/>443.6<br/>159.7<br/>133.8<br/>329.0<br/>36.9</th> <th>ビーク計<br/>数率<br/>(カウント<br/>数/秒)<br/>0.022625<br/>0.145467<br/>0.103558<br/>0.010361<br/>0.010361</th> <th>測定時の放射能<br/>Bq<br/>10.41<br/>10.64<br/>11.11<br/>11.13<br/>14.80<br/>52.31</th> <th>供試品作製時<br/>の放射能<br/>10.66<br/>10.90<br/>11.38<br/>11.40<br/>14.83<br/>52.31</th> <th>供試品作製時の<br/>放射能濃度<br/>(Bq/kg)<br/>78.94<br/>80.71<br/>84.28<br/>84.41<br/>80.71<br/>109.8<br/>387.5</th> <th>拡張不確かさ<br/>(k=2)<br/>(Bq/kg)<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.352<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.352<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.85<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.85<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.85<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.85<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.85<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.85<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.85<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.85<br/>求め方は報告シート(不<br/>確かさ)に忍入する。<br/>2.414<br/>*状広長するか</th> <th>試料かないと<br/>きの正味バッ<br/>クグラウンドカ<br/>ウント数 N'-<br/>12.2<br/>12.9<br/>12.9<br/>12.6<br/>12.6<br/>12.9<br/>17<br/>76.2<br/>こついては、分析</th> <th>試料がないと<br/>きのバックグラ<br/>ウンドカウント<br/><u>*</u>73.8<br/>78.1<br/>57.8<br/>50.4<br/>78.1<br/>68.0<br/>15.8<br/>工程全般におけそ</th> <th>バックグラウンド<br/>測定時間<sup>*</sup> 秒<br/>24000<br/>24000<br/>24000<br/>24000<br/>24000<br/>24000<br/>24000<br/>24000</th> | CS=134       00         CS=137       10         K=40:       438         核種       05-134         CS=134       05-134         CS=134       05-134         CS=134       05-134         CS=134       05-134         CS=134       05-134         CS=137       05-137         K=40       05-137                                                                                                                                                                                                                                                                                                                                          | <pre>// Lit 277 × 10<sup>9</sup>Y</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | エネルギー<br>個々のエネルギーを記<br>入する<br>569.32keV<br>個々のエネルギーを記<br>入する<br>604.70keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>801.93keV<br>定量値(平均値など)<br>604.70keV<br>661.66keV<br>1460.75keV<br>の出典を記入する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 放出効率 %<br>個々に起入する<br><u>15.43</u><br>個々に起入する<br><u>97.60</u><br>個々に起入する<br><u>85.40</u><br>個々に起入する<br><u>8.73</u><br><u>85.21</u><br><u>10.67</u><br>こて下さい | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000<br>36000<br>36000          | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373<br>6334.2<br>1479.1 | バックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8<br>329.0<br>36.9 | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558<br>0.010361<br>0.010361            | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13<br>14.80<br>52.31 | 供試品作製時<br>の放射能<br>10.66<br>10.90<br>11.38<br>11.40<br>14.83<br>52.31      | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41<br>80.71<br>109.8<br>387.5 | 拡張不確かさ<br>(k=2)<br>(Bq/kg)<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.352<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.352<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に忍入する。<br>2.414<br>*状広長するか                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2<br>12.9<br>12.9<br>12.6<br>12.6<br>12.9<br>17<br>76.2<br>こついては、分析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 試料がないと<br>きのバックグラ<br>ウンドカウント<br><u>*</u> 73.8<br>78.1<br>57.8<br>50.4<br>78.1<br>68.0<br>15.8<br>工程全般におけそ                                                                                                                      | バックグラウンド<br>測定時間 <sup>*</sup> 秒<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000                                          |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法は以下の通り。<br>・2L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正<br>を実施する。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用いる)<br><測定方法><br>放射能濃度の計算方法は以下の通り。<br>(①求めるピークを含むスペクトルを「ベー<br>ス関数」及び「カウス関数」の近似式より、ピーク面積<br>を算出する。(ビークを積算し面積を求める)<br>③以下の式により、放射能濃度を算出する。<br>か射能濃度=ピーク面積-(放出効率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cs-134       10         K-40:       438         核種       Cs-134         Cs-134       Cs-134                                                                                                                                                                                                                                                                                                        | Akkey: 72:0 ±         6 ± 1         ± 11         半減期         2.062Y         30.00Y         1.277×10°Y         上記項目         標準物質<試料 | エネルギー<br>個々のエネルギーを記<br>入する<br>569.32keV<br>個々のエネルギーを記<br>入する<br>604.70keV<br>個々のエホルギーを記<br>入する<br>795.85keV<br>個々のエホルギーを記<br>入する<br>801.93keV<br>個々のエホルギーを記<br>入する<br>801.93keV<br>個々のエホルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>入する<br>801.93keV<br>個々のエネルギーを記<br>大する<br>801.93keV<br>個々のエネルギーを記<br>日<br>の<br>日<br>の<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>の<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日 | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>85.40<br>個々に記入する<br>8.73<br>85.21<br>10.67<br>こて下さい                       | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000<br>36000<br>36000          | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373<br>6334.2<br>1479.1 | パックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8<br>329.0<br>36.9 | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558<br>0.010361<br>0.17595<br>0.041086 | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13<br>14.80<br>52.31 | 供試品作製時<br>の 放<br>射能<br>10.66<br>10.90<br>11.38<br>11.40<br>14.83<br>52.31 | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41<br>80.71<br>109.8<br>387.5 | 拡張不確かさ<br>(k=2)<br>(Bq/kg)<br>求め方は報告シート(不<br>確かさ)に記入する。<br>6.842<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.85<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求め方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>求の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>次の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>次の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>次の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>次の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>次の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>次の方は表示る。<br>2.352<br>次の方は報告シート(不<br>確かさ)に記入する。<br>2.352<br>次の方は表示る。<br>なからいため、<br>なっこここのかする。<br>2.352<br>次の方は表示る。<br>2.352<br>次の方は表示る。<br>2.414<br>本かる<br>本かる<br>本のかる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる<br>本のまる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 試料かないと<br>きの正味バックグラウンドカ<br>ウント数 N'- 12.2 12.9 12.9 12.6 12.9 12.6 12.9 76.2 こついては、分析 ざについては、グ析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>試料かないと<br/>きのバックグラ<br/>ウンドカウント<br/>数7 Nb<sup>+</sup>*</li> <li>73.8</li> <li>78.1</li> <li>57.8</li> <li>50.4</li> <li>78.1</li> <li>68.0</li> <li>15.8</li> <li>工程全般における<br/>気の2倍値(2 σ)</li> <li>月中に社内で検討</li> </ul> | バックグラウンド<br>測定時間*秒<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>5不確かさが未定で<br>を記載した。な<br>正し算定する予定で         |
|   | 試験所<br>番号 | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法><br>校正方法は以下の通り。<br>・2L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・高さ別の体積標準線源を用い、効率校正<br>を実施する。<br>・協己吸収補正項、サム補正項は、既知<br>のデータを用いる)<br><測定方法><br>放射能濃度の計算方法は以下の通り。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用いる)<br><測定方法><br>放射能濃度の計算方法は以下の通り。<br>①「ガウス関数」及び「ガウス関数」に近似させる。<br>②「ガウス関数」の近似式より、ピーク直積<br>を算出する。(ピークを積算し面積を求める)<br>③以下の式により、放射能濃度を算出する。<br>放射能濃度=ピーク面積÷(放出効率<br>×検出効率×測定時間×試料重量×自己                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cs-134       10         K-40:       438         核種       Cs-134         Cs-134       Cs-134                                                                                                                                                                                                                                                                                                        | Akev. 72.0 ±         6 ± 1         ± 11         半減期         2.062Y         2.062Y         2.062Y         2.062Y         2.062Y         2.062Y         30.00Y         1.277×10 <sup>9</sup> Y         上記項目         標準物質<試料                                                                                                                                                                                                                                                                                                                               | エネルギー<br>個々のエキルギーを記<br>入する<br>604.70keV<br>個々のエキルギーを記<br>入する<br>604.70keV<br>個々のエキルギーを記<br>入する<br>801.93keV<br>個々のエキルギーを記<br>入する<br>801.93keV<br>個々のエキルギーを記<br>入する<br>801.93keV<br>604.70keV<br>604.70keV<br>661.66keV<br>1460.75keV<br>の出典を記入し<br>番号1-1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>85.40<br>個々に記入する<br>85.21<br>10.67<br>こて下さい                               | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000<br>36000<br>36000          | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373<br>6334.2<br>1479.1 | パックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8<br>329.0<br>36.9 | ビーク計<br>数率<br>(カウント<br>数/秒)<br>0.022625<br>0.145467<br>0.103558<br>0.010361<br>0.17595<br>0.041086 | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13<br>14.80<br>52.31 | 供試品作製時<br>の放射能<br>日<br>10.66<br>10.90<br>11.38<br>11.40<br>14.83<br>52.31 | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41<br>80.71<br>109.8<br>387.5 | 拡張不確かさ<br>(k=2)<br>(Bq/kg)           求め方は報告シート(不<br>確かさ)に起入する。           6.842           求め方は報告シート(不<br>確かさ)に起入する。           2.352           求め方は報告シート(不<br>確かさ)に起入する。           2.85           求め方は報告シート(不<br>確かさ)に起入する。           10.83           求め方は報告シート(不<br>確かさ)に起入する。           2.852           求め方は報告シート(不<br>確かさ)に起入する。           2.352           求め方は報告シート(不<br>確かさ)に起入する。           2.352           求め方は報告シート(不<br>確かさ)に起入する。           2.842           求め方は報告シート(不<br>確かさ)に起入する。           求本の方は報告シート(不<br>確かさ)に起入する。           北張天不確かさ)に<br>あるため、暫定<br>お、拡張天確<br>かる」           あり、必要であ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 証料かないと<br>きのバックグラ<br>ウンドカウント<br>*/ Nb <sup>·*</sup> 73.8     78.1     57.8     50.4     78.1     68.0     15.8     エ程全般における     章の2倍値(2 σ) 月中に社内で検討 出は可能。                                                                      | バックグラウンド<br>測定時間*秒<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>5不確かさが未定で<br>を記載した。な<br>正し算定する予定で         |
|   | 試験号       | 線を比較して示す。<br>測定条件概要。サム効果や自己吸収補正<br>の有無など、校正・測定方法を付記する。<br><ゲルマニウム半導体検出器><br>GC2018(CANBERRA社)<br><校正方法><br>校正方法は以下の通り。<br>・2.L体積標準線源を用い、エネルギー校<br>正を実施する。<br>・意之別の体積標準線源を用い、効率校正<br>を実施する。<br>・校正の際、自己吸収補正及びサム補正<br>を実施する。<br>・校正の際、自己吸収補正及びサム補正<br>を実施する。<br>(自己吸収補正項、サム補正項は、既知<br>のデータを用いる)<br><測定方法><br>放射能濃度の計算方法は以下の通り。<br>①求めるピークを含むスペクトルを「ベー<br>ス関数」及び「ガウス関数」に近似させる。<br>②「ガウス関数」の近似式より、ピーク面積<br>を算出する。(ピークがガウス関数に適合し<br>ない場合は、ピークを積算し面積を求める)<br>③以下の式により、放射能濃度を算出する。<br>放射能濃度=ピーク面積÷(放出効率<br>×検出効率×測定時間×試料重量×自己<br>吸収補正項×サム効果補正項)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cs-134       00         K-40:       438         核種       0         Cs-134       0         Cs-134       0         Cs-134       0         Cs-134       0         Cs-134       0         Cs-134       0         K-40       0                                                                                                                                                                                                                                                                                                                                                                                                          | 6       ±       1         ±       11         半減期         2.062Y         2.062Y         2.062Y         2.062Y         2.062Y         2.062Y         30.00Y         1.277×10 <sup>9</sup> Y         上記項目<                                                                                                                                                                                                                                                                                                                                                 | エネルギー<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>795.85keV<br>個々のエネルギーを記<br>入する<br>604.70keV<br>601.66keV<br>1460.75keV<br>の出典を記入1<br>番号1-1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 放出効率 %<br>個々に記入する<br>15.43<br>個々に記入する<br>97.60<br>個々に記入する<br>85.40<br>個々に記入する<br>85.40<br>個々に記入する<br>85.21<br>10.67<br>こて下さい                               | 測定時間<br>live time(秒)<br>36000<br>36000<br>36000<br>36000<br>36000<br>36000 | 正味カウント数<br>N-Nb<br>814.5<br>5236.8<br>3728.1<br>373<br>6334.2<br>1479.1 | バックグラウン<br>ドカウント数<br>Nb<br>450.9<br>443.6<br>159.7<br>133.8<br>329.0<br>36.9 | ビーク計<br>数/か<br>0.022625<br>0.145467<br>0.103558<br>0.010361<br>0.17595<br>0.041086                 | 測定時の放射能<br>Bq<br>10.41<br>10.64<br>11.11<br>11.13<br>14.80<br>52.31 | 供試品作製時<br>の放射能<br>10.66<br>10.90<br>11.38<br>11.40<br>14.83<br>52.31      | 供試品作製時の<br>放射能濃度<br>(Bq/kg)<br>78.94<br>80.71<br>84.28<br>84.41<br>80.71<br>109.8<br>387.5 | 拡張不確かさ<br>(k=2)<br>(Bq/kg)           求め方は報告シート(不<br>確かさ)に記入する。           家の方は報告シート(不<br>確かさ)に記入する。           ス352           求め方は報告シート(不<br>確かさ)に記入する。           ス352           求め方は報告シート(不<br>確かさ)に記入する。           2.852           求め方は報告シート(不<br>確かさ)に記入する。           10.83           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.352           求め方は報告シート(不<br>確かさ)に記入する。           2.4.14           *拡張不確かさ「<br>あるため、暫定<br>お、拡張不確か<br>あり、必要であ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 試料かないと<br>きの正味バッ<br>クグラウンドカ<br>ウント数 N'-<br>12.2<br>12.9<br>12.9<br>12.6<br>12.6<br>12.9<br>12.6<br>12.9<br>12.6<br>12.9<br>12.5<br>12.9<br>12.5<br>12.9<br>12.5<br>12.9<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12. |                                                                                                                                                                                                                                | バックグラウンド<br>測定時間*秒<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000<br>24000 |

26 / 67

| 試験所<br>番号 | ・感度係数(cps/Bq)を求めるために使<br>用した標準線源名 | 放射能標準ガンマ体積線源             |        |  |  |  |  |  |  |
|-----------|-----------------------------------|--------------------------|--------|--|--|--|--|--|--|
|           | ・感度係数(cps/Bq)を求めるために使             | 目した全ての核種の感度係数(cps/Bq)    | 検出効率 % |  |  |  |  |  |  |
|           | Cs-134                            | 別表に示す。                   | 別表に示す。 |  |  |  |  |  |  |
|           | Cs-137                            |                          |        |  |  |  |  |  |  |
|           | K-40                              |                          |        |  |  |  |  |  |  |
|           | ・定量に使用した感度係数<br>(cps/Bq) *        |                          |        |  |  |  |  |  |  |
|           | Cs-134                            | $1.367 \times 10^{-2}$   |        |  |  |  |  |  |  |
|           | Cs-137                            | 1.189 × 10 <sup>-2</sup> |        |  |  |  |  |  |  |
|           | K-40                              | $7.242 \times 10^{-4}$   |        |  |  |  |  |  |  |

\*別表に示す標準線源の測定結果を関数化した効率校正式により、近似値を求めた。 8

試験所 番号

7

| 核種名    | エネルキ <sup>*</sup> -<br>(eV) |        | 感度係数   | (cps/Bq) |       | 検出効率(%) |       |       |       |  |  |  |
|--------|-----------------------------|--------|--------|----------|-------|---------|-------|-------|-------|--|--|--|
|        |                             | 0.6cm  | 1.3cm  | 3.3cm    | 5.0cm | 0.6cm   | 1.3cm | 3.3cm | 5.0cm |  |  |  |
| Cd-109 | 88.03                       | 0.653  | 0.577  | 0.403    | 0.303 | 0.172   | 0.152 | 0.106 | 0.080 |  |  |  |
| Co- 57 | 122.06                      | 15.227 | 13.594 | 9.315    | 7.066 | 0.178   | 0.159 | 0.109 | 0.083 |  |  |  |
| Co- 57 | 136.47                      | 1.824  | 1.623  | 1.103    | 0.841 | 0.164   | 0.146 | 0.099 | 0.076 |  |  |  |
| Ce-139 | 165.85                      | 11.08  | 9.937  | 6.979    | 5.317 | 0.139   | 0.124 | 0.087 | 0.067 |  |  |  |
| Cr- 51 | 320.08                      | 0.770  | 0.678  | 0.470    | 0.356 | 0.075   | 0.066 | 0.046 | 0.035 |  |  |  |
| Sr- 85 | 514                         | 4.594  | 4.066  | 2.715    | 2.067 | 0.046   | 0.041 | 0.027 | 0.021 |  |  |  |
| Cs-137 | 661.64                      | 3.150  | 2.782  | 1.853    | 1.387 | 0.037   | 0.033 | 0.022 | 0.016 |  |  |  |
| Mn− 54 | 834.83                      | 2.965  | 2.648  | 1.764    | 1.334 | 0.030   | 0.026 | 0.018 | 0.013 |  |  |  |
| Y - 88 | 898.02                      | 2.587  | 2.240  | 1.517    | 1.138 | 0.028   | 0.025 | 0.017 | 0.012 |  |  |  |
| Co- 60 | 1173.21                     | 2.142  | 1.889  | 1.261    | 0.927 | 0.021   | 0.019 | 0.013 | 0.009 |  |  |  |
| Co- 60 | 1332.47                     | 1.901  | 1.681  | 1.118    | 0.824 | 0.019   | 0.017 | 0.011 | 0.008 |  |  |  |
| Y - 88 | 1836.13                     | 1.404  | 1.231  | 0.813    | 0.600 | 0.014   | 0.012 | 0.008 | 0.006 |  |  |  |

| 試験的       | f 測定条件概要。サム効果や自己吸収補正の有無など、校正・測定方法を付記する                    | 均質性試験結果            |                          |                          |                                  |                     |                      |                        |                        |                |                         |                  |                                     |                       |                     |          |
|-----------|-----------------------------------------------------------|--------------------|--------------------------|--------------------------|----------------------------------|---------------------|----------------------|------------------------|------------------------|----------------|-------------------------|------------------|-------------------------------------|-----------------------|---------------------|----------|
| <u> </u>  |                                                           |                    | 測定制                      | 順序                       | Cs-1                             | 34                  | Cs-13                | 7                      |                        | K-40           |                         | 1                |                                     |                       |                     |          |
|           |                                                           | <u> </u>           | <u> </u>                 | 0-0-2                    | 80.31583                         | 0-0-2               | 114.328              | 0-0-2                  | 809.5698               | 0-0-2          | <u>測定時間sec</u><br>44000 |                  |                                     |                       |                     |          |
|           |                                                           | 1-2                |                          | 3                        | 01.05040                         | 78.71056            | 110,0000             | 116.2794               | 700.0000               | 809.1691       | 65000                   |                  |                                     |                       |                     |          |
|           |                                                           | 2-1                | 2                        | 6                        | 81.30040                         | 81.71428            | 110.3298             | 118.4895               | /90.0330               | 820.3404       | 54000                   |                  |                                     |                       |                     |          |
|           |                                                           | 3-1                | 4                        | (1)                      | 77.85454                         | 01 16202            | 116.7236             | 117 706                | 796.4884               | 702 0060       | 36000                   |                  |                                     |                       |                     |          |
|           |                                                           | 3-2                | 平均值                      | U                        | 80.1                             | 9                   | 116.6                | 117.700                |                        | 803.0          | 30000                   |                  |                                     |                       |                     |          |
|           |                                                           |                    | 標準偏差                     |                          | 1.5                              | 7                   | 1.4                  |                        |                        | 11.8           | 7                       |                  |                                     |                       |                     |          |
|           |                                                           |                    | KSD /a                   |                          | 2.0                              | /0                  | 1.2/0                |                        |                        | 1:570          | _                       |                  |                                     |                       |                     |          |
|           |                                                           | 試料名                | 測定日                      | 測定時                      | 基準時からの<br>経過時間(分)                | 測定値<br>(Bq/kg)      | 測定値(Bq/kg)<br>Cs-137 | 測定値(Bq/kg)<br>K−40     | 減衰補正<br>Cs-134         | 減衰補正<br>Cs−137 | 減衰補正<br>K−40            |                  |                                     |                       |                     |          |
|           |                                                           | 1-1                | 2012/2/28                | 3 20:36                  | 6 40116                          | 80.31583            | 114.328              | 428.9676112            | 82.40                  | 114.53         | 428.97                  |                  |                                     |                       |                     |          |
|           |                                                           | 2-1                | 2012/2/26                | 5 14:17                  | 4 35664                          | 81.3564             | 116.3298             | 428.571754             | 80.58                  | 116.47         | 428.57                  |                  |                                     |                       |                     |          |
|           |                                                           | 2-2                | 2012/2/29                | 9 17:26                  | 6 41366                          | 81.71428            | 118.4895             | 439.7569071            | 83.90                  | 118.70         | 439.76                  |                  |                                     |                       |                     |          |
| 10        |                                                           | 3-1                | 2012/2/2/23              | 3 9:38                   | 32258                            | 8 81.16382          | 117.706              | 415.9011959            | 82.85                  | 117.87         | 415.90                  | →共同実験結果          | として採用                               |                       |                     |          |
|           |                                                           |                    | 基準日 2012/2/1             | 基準時<br>1 0:00            | )                                | 減衰係数<br>6.38434E-07 | 減衰係数<br>4.38038E-08  | 減衰係数<br>1.05648E-15    | i                      |                |                         |                  |                                     |                       |                     |          |
|           |                                                           |                    |                          |                          |                                  | <b>半減</b> 期(左)      | 半減期(年)               | 半減期(在)                 |                        |                |                         |                  |                                     |                       |                     |          |
|           |                                                           |                    |                          | 31680                    |                                  | 2.0652              | 30.1                 | 1248000000             | )                      |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | 試料番号               | 測定時間sec                  | ピーク面積                    | Bq∕kg                            | 1秒あたりの<br>BC客ち      | BG差し引いた正味の<br>ピーク両時  | <sup>40</sup> K 真Bq/kg |                        |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | BG                 | 43200                    | 1664                     |                                  | 0.038518519         | こう面積                 |                        | 1                      |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | 1-1                | 44000                    | 3605                     | 809.5698                         |                     | 1910                 | 429.0                  | -                      |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | 2-1                | 50000                    | 4000.9                   | 790.6336                         |                     | 2075                 | 410.0                  | 1                      |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | 2-2                | 54000<br>36000           | 4483.4                   | 820.3404                         |                     | 2403                 | 439.8<br>415.9         | -                      |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | 3-2                | 36000                    | 2886                     | 792.0969                         |                     | 1499                 | 411.5                  |                        |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | <u>平均值</u><br>標準偏差 |                          |                          |                                  |                     |                      | 422.46                 | 4                      |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | RSD %              |                          |                          |                                  |                     |                      | 2.8%                   | 1                      |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | Γ                  | Γ                        |                          |                                  |                     |                      |                        | ピーク計                   |                | 供試品作製時                  |                  |                                     |                       | 試料がないと              |          |
| 試験的       | f 測定条件概要。サム効果や自己吸収補正                                      | 核種                 | 半減期                      | エネルギー                    | 放出効率 %                           | 測定時間                | 正味カウント数              | バックグラウン<br>  ドカウント数    | 数率                     | 測定時の放射能        | の放                      | 供試品作製時の<br>放射能濃度 | h 拡張不確かさ<br>(k=2)                   | さの止味ハッ<br>クグラウンドカ     | きのバックグラ             | バックグラウンド |
| 留方        |                                                           |                    |                          |                          |                                  | iive time(种少)       | IN-IND               | Nb                     | (パワント) 数/秒)            | Bq             | Bq                      | (Bq/kg)          | (Bq/kg)                             | ウント数 N'-              | シントパッシント<br>数 Nb' * | 測定时间 杪   |
|           | オルテックGMX-60P4-83<br>解析システム: セイコー E G& G (株)               | 0- 124             |                          | 個々のエネルギーを言<br>入する        | こ 個々に記入する                        |                     |                      |                        |                        |                |                         |                  | 求め方は報告シート(不<br>確かさ)に記入する            | 5                     |                     |          |
|           | Cs134の定量値について:                                            | 68-134             | 2 062年                   | 604 66                   | 07 56                            | 80000               | 19066 6              | 1617 4                 | 0.005000               | 11.0           | 11.0                    | 07.0             | 检针击                                 | 0                     | 0                   | 250000   |
|           | のピークおよび、Ac-228のピークが重なる                                    | 0. 104             | 2.0024                   | 個々のエネルギーを書               | 97.50<br><sup>2</sup> 個々に記入する    | 80000               | 18000.0              | 1017.4                 | 0.225655               | 11.2           | 11.0                    | 07.2             | (円 引) 十<br>求め方は報告シート(不<br>確かさ)におうする | - U                   | 0                   | 230000   |
|           | ため、604.66keV、795.76keV双方の値に大                              | US-134             | 2.062年                   | 795. 76                  | 85. 44                           | 80000               | 13273.0              | 836.5                  | 0.165913               | 11.2           | 11.8                    | 87.3             | <sup>確於27</sup> に記入930。<br>検討中      | 0                     | 0                   | 250000   |
|           | を採用することとする。サム効果:Cs-134に                                   | Co-124             |                          | 個々のエネルギーを言<br>入する        | d 個々に記入する                        |                     |                      |                        |                        |                |                         |                  | 求め方は報告シート (不<br>確かさ)に記入する。          |                       |                     |          |
|           | ついて実施。                                                    | 03 104             |                          |                          |                                  |                     |                      |                        | #DIV/0!                |                |                         |                  |                                     |                       |                     |          |
|           | 自己吸収補正:全核種について実施。                                         | Cs-134             |                          | 個々のエネルギーを言<br>入する        | d 個々に記入する                        |                     |                      |                        | #DIV(/01               |                |                         |                  | 求め方は報告シート(不<br>確かさ)に記入する。           | 2                     |                     |          |
| 11        | 校正:標準ガンマ体積線源高さ5段階(5,10,                                   |                    |                          | 定量値(平均値など)<br>を記入する。求め方の | >                                |                     |                      |                        | #DIV/0:                |                |                         |                  | 求め方は報告シート(不                         |                       |                     |          |
|           | 20,30,50mm)を用いて実施。                                        | Cs-134             |                          | 詳細は表紙のコメント<br>欄へ記載する。    | -                                |                     |                      |                        |                        |                |                         |                  | 確かさ)に記入する。                          |                       |                     |          |
|           | 測定方法:試料の充填高さ、密度、重量及                                       |                    |                          | 604.66                   |                                  |                     |                      |                        |                        |                |                         | 87.2             | 求め方は報告シート(不                         | 0                     | 0                   | 250000   |
|           | び 試料材質の情報を人力し、セイコー イー<br>ジーアンドジー㈱製解析プログラムの登録              | Cs-137             | 3 0174×10 <sup>1</sup> 年 | 661, 64                  | 85, 00                           | 80000               | 23100.8              | 1232.2                 | 0.28876                | 15.8           | 15.8                    | 117              | 確かさ)に記入する。<br>検討中                   | 0                     | 0                   | 250000   |
|           | 情報(サム効果補正係数、自己吸収率補正                                       | K-40               |                          |                          |                                  |                     |                      |                        |                        |                |                         |                  | 求め方は報告シート(不<br>確かさ)に記入する。           | 2                     |                     |          |
|           | 係数川により定重する。                                               | K 40               | 1.277×10 <sup>9</sup> 年  | 1460.75                  | 10.67                            | 80000               | 5812.2               | 276                    | 0.072653               | 54.0           | 54.0                    | 400              | 検討中                                 | 465                   | 473                 | 250000   |
|           |                                                           |                    | 上記項目                     | の出典を記人                   | して下さい                            |                     |                      |                        |                        |                |                         |                  |                                     |                       |                     |          |
|           |                                                           |                    | ゲルマニウム半導体相               | 放射能測定シリー.<br>検出器によるガン    | ズ7<br>マ線スペクトロメトリー                |                     |                      |                        |                        |                |                         |                  |                                     |                       |                     |          |
|           |                                                           |                    | (又部科字省 科学打               | は何・字衲政策局原<br>策室)         | <sub>吊</sub> ナ刀女全課 <b>防災環境</b> 対 |                     |                      |                        |                        |                |                         |                  |                                     |                       |                     |          |
|           |                                                           | I                  | ļ                        |                          | 1                                | ·                   | ł                    | l                      | ıł                     |                | 1                       |                  | ļ                                   |                       |                     | ł        |
| ≣;† ₽₽≏ ⊐ | 近 測定条件概要 サム効果や白ヨ吸収域で                                      |                    | 光鸿即                      | エネルギー                    | 故史効率                             | 測定時間                | 正時七月、水粉              | バックグラウン                | ピーク計<br><sub>数 変</sub> | 測定時の故射能        | 供試品作製時のが                | 供試品作製時の          | 拡張不確かさ                              | きの正味バッ                | 試料がないと<br>きのバックグラ   | バックグラウンド |
| 番号        | の有無など、校正・測定方法を付記する。                                       | 核種                 | (Y)                      | (KeV)                    | (%)                              | live time(秒)        | N−Nb                 | ドカウント数                 | が平(カウント                | Bq             | 射能                      | 放射能濃度            | (k=2)                               | クグラウンドカ<br>  ウント数 N'− | ウンドカウント             | 測定時間*秒   |
|           |                                                           |                    |                          |                          |                                  |                     |                      |                        | 数/秒)                   |                | Bq                      | (D4/ N8/         | (Dy/ Ng/                            | ×11.7*                | 数 Nb' *             |          |
|           | 後山効率の算山はシングルガンマ液種であ<br>る139Ce(165.9KeV)、137Cs(661.6KeV)とマ | Cs-134             |                          | 個々のエネルギーを書<br>入する        | <sup>2</sup> 個々に記入する             |                     |                      |                        |                        |                |                         |                  | 求め方は報告シート(不<br>確かさ)に記入する。           |                       |                     |          |
|           | ルチガンマではあるがほとんど514KeVのγ<br>線しかださない855cを用いた。測定位置け           | 50 104             | 2,065                    | 604. 7                   | 0, 976                           | 199922 7            | 9536                 |                        | 0.047698               | 10.93          | 3 11.46                 | 84 87            | ,                                   | 376                   |                     | 186698   |
|           | 検出器表面から約6cmの距離で行った。な                                      | Cs-134             |                          | 個々のエネルギーを言<br>入する        | ピーロー 個々に記入する                     |                     |                      |                        |                        | 10.00          | 11.10                   | 01.07            | 求め方は報告シート(不<br>確かさ)に記入する。           | š                     |                     | 100000   |
|           | お、検出効率は(Bq./Bq.)で求めている。                                   |                    |                          | 795.9<br>定量値(平均値など)      | 0. 854                           | 199922.7            | 7119                 |                        | 0.035609               | 11.18          | 3 11.72                 | 86.82            |                                     | 310                   |                     | 186698   |
| 10        |                                                           | Cs-134             |                          | を記入する。求め方の<br>詳細は表紙のコメント | 2                                |                     |                      |                        |                        |                |                         | 平均値(JSAC)        | 求め方は報告シート (不<br>確かさ) に記入する。         |                       |                     |          |
| 12        |                                                           |                    |                          | 1用へ 80 戦する。              |                                  |                     |                      |                        |                        |                |                         | 85.85            |                                     |                       |                     |          |
|           |                                                           | Cs-137             | 00.07                    | 001                      | 0.051                            | 100000 -            |                      |                        | 0.054005               |                |                         |                  | 求め方は報告シート(不<br>確かさ)に記入する。           |                       |                     | 1000     |
|           |                                                           | K 40               | 30.07                    | 661                      | 0.851                            | 199922.7            | 10983                |                        | 0.054936               | 14.55          | 14.60                   | 108.1            | 求め方は報告シート (不<br>確かさ) に記 1 オス        | 697                   |                     | 186698   |
|           |                                                           | K-40               | 1.28E+09                 | 1460.9                   | 0.1067                           | 199922.7            | 7810                 |                        | 0.039065               | 48.33          | 3 48.33                 | 388.6            | 114/07-11-1111人9 句。                 | 4816                  |                     | 186698   |
|           |                                                           |                    | 上記項目<br>Tabl             | の出典を記入<br>le of Isotope  | して下さい<br>es 8th                  |                     |                      |                        |                        |                |                         |                  |                                     |                       |                     |          |

|                  | 250000              |
|------------------|---------------------|
|                  |                     |
|                  |                     |
|                  |                     |
|                  | 250000              |
|                  | 250000              |
|                  | 250000              |
|                  |                     |
|                  |                     |
| いと<br>フグラ<br>フント | バックグラウンド<br>測定時間* 秒 |
|                  |                     |
|                  | 186698              |
|                  | 186698              |
|                  |                     |
|                  | 186698              |
|                  | 186698              |
|                  |                     |
|                  |                     |
|                  |                     |

|                                                                              |                                                                             |                                        |                                                                                           |                                    |                          |                                              |                  | ( |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|--------------------------|----------------------------------------------|------------------|---|
|                                                                              |                                                                             |                                        | 分析化                                                                                       | 学3-2-2.0                           | HN                       |                                              |                  | ( |
| A                                                                            | cquired:2012-0                                                              | 2-23 21:09:                            | 38 Real T                                                                                 | ime:36014.6(s                      | sec) Live                | Time:36000.0                                 | D(sec)           | - |
| [試料] 試料コード:                                                                  |                                                                             | K.                                     | 料名称 :2-2-2 5                                                                              | )相同的1                              |                          | <b>採取者</b> :e                                | schiyama         |   |
| 採取場所<br>前処理形態:なし<br>封賀 :+塩・油                                                 | 4er+                                                                        | 容                                      | 四日<br>四日<br>四日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日 | 1                                  | 試料量:0.135                | kg                                           |                  |   |
| [測定] 測定番号<br>[条件] 測定目的 : 福島20<br>[条件] 測定目的 : 福島20<br>[成料件数 : 土壌<br>測定条件 : なし | )km圈内森林测定                                                                   | 密核                                     | 度 :1.000<br>出器番号:1                                                                        | (g/cm3)                            | 回収率:100.000<br>測定者:okada | (%) 充填高:!                                    | 50, 000 (nm)     |   |
| 試料採放開始日時<br>試料採放終了日時<br>測定開始日時                                               | 2012年 2月 1日 08<br>2012年 2月 1日 06<br>2012年 2月 1日 06<br>2012年 2月 23日 21       | 時 0分 0秒<br>時 0分 0秒<br>時 9分 38秒         | 試料採取中の<br>試料保存中の<br>試料測定中の                                                                | D減衰補正:No<br>D減衰補正:Yes<br>D減衰補正:Yes | 試料採取到<br>試料保存到<br>測定時間() | 間(秒):0.0<br>間(秒):1976978.0<br>(刊)(秒):36014.6 |                  |   |
| ビークサーチ方法<br>ビークキの計算方法<br>検出の判定方法<br>検出限果ファクタ                                 | 詳細版 平滑化二次微分<br>二次微係数の3点放物<br>全主要ピークの検出<br>3.0                               | }法ピークサーチ<br>線近似法                       | サーチ感度<br>枝種同定幅                                                                            | :3.0<br>:(F₩HM × 1.00)             |                          |                                              |                  |   |
| 妨害基準ビークの判定方法:<br>ビーク登域の設定方法:                                                 | 全定量ピークを妨害基<br>ピークファクタを変化                                                    | 準とする<br>させて領域設定                        | 妨害同定幅<br>低(1.5←1.5                                                                        | :(FWHW×1.20)<br>ー中心) ピーク(1.5+-     | 中心→1.5) 高(4              | ‡4Ò→1. 5→1. 5)                               | <b>※F₩₩×</b> F   |   |
| 核種ライブラリ :3                                                                   | Sample.LIV 🐒                                                                | 錄日:2011年 5月                            | 10日                                                                                       |                                    |                          |                                              |                  |   |
| 基準エキルギ校正 : [<br>分析時の再校正 : [<br>エネルギ校正式 : )                                   | $ENE\_Co57-Co60$ . ENE<br>Disable<br>$y = A + Bx^1$<br>A= 2.7567E=01 B= 4.1 | 校正日:2011年                              | 4月 15日                                                                                    |                                    |                          |                                              |                  |   |
| 半纖幅校正式                                                                       | y = A + B+SQR (ENE)<br>A= 1.9552E+00 B= 5.4                                 | 0320E-02                               |                                                                                           |                                    |                          |                                              |                  |   |
| 効率校王<br>効率校王式                                                                | VS-GroupTakasaReV.EFF<br>- 分析時に内挿法によ<br>1 / Eff = (1/Eff;                   | F 校正日:20<br>:り算出 -<br>2 - 1/Eff1) + () | 11年 7月 5日<br>h - h1)/(h2 - h1)                                                            | + 1/Eff1                           |                          |                                              |                  |   |
| 分析率自由時 :2                                                                    | 2012-02-24 09:18:18                                                         | 4345 E-1*                              | 理境公拆(水) 4法之                                                                               | (林-安吾) (4)                         | Faller 5 - /             | 1001 43-16TV 1                               | at -12 at 1 . 67 |   |

| 試験所<br>番号 | ・Ge検出器の相対効率                                                                   | 68%                                            |
|-----------|-------------------------------------------------------------------------------|------------------------------------------------|
|           | ・検出効率(cps/Bq)を求めるために使用した標準<br>線源名                                             | 放射能標準ガンマ体積線源(アルミナ)<br>MX033U8PP((社)日本アイソトープ協会) |
|           | <u>•検出効率(cps/Bq)を求めるため</u><br>Cd-109, Co-57, Ce-139,<br>Cr-51, Sr-85, Cs-137, | 別添の効率校正データの通り<br>(省略)                          |
|           | <ul> <li>・定量に使用した検出効率</li> <li>Cs=134</li> <li>Cs=134</li> </ul>              | 2.0610                                         |
| 11        | K-40                                                                          | 1.2618                                         |
|           |                                                                               |                                                |
|           |                                                                               |                                                |
|           |                                                                               |                                                |

| 試験所<br>番号 | ・Ge検出器の相対効率                       | 40%                  |  |  |
|-----------|-----------------------------------|----------------------|--|--|
|           | ・検出効率(cps/Bq)を求めるために使用した標準<br>線源名 | code:MX033SPLU8 混合核種 |  |  |
|           | ・検出効率(cps/Bq)を求めるため               |                      |  |  |
|           | Cs-134                            |                      |  |  |
|           | Cs-137                            |                      |  |  |
| 12        | K-40                              |                      |  |  |
|           | ・定量に使用した検出効率(Bq/Bq)               |                      |  |  |
|           | Cs-134(604.7KeV)                  | 0.004434             |  |  |
|           | Cs-134(795.9KeV)                  | 0.003726             |  |  |
|           | Cs-137                            | 0.004139             |  |  |
|           | K-40                              | 0.002538             |  |  |
|           |                                   |                      |  |  |

| 試験所<br>測定条件概要。サム効果や自己吸収補正<br>番号の有無など、校正・測定方法を付記する。                                                 | 核種     | 半減期                      | エネルギー                                             | 放出効率 %                  | 測定時間<br>live time(秒) | 正味カウント数<br>N-Nb | バックグラウン<br>ドカウント数<br>Nb | ピーク計<br>数率<br>(カウント<br>数/秒) | 測定時の放射能<br>Bq | 供試品作製時<br>の 放<br>射能<br>Bq | 供試品作製時の<br>放射能濃度<br>(Bq/kg) | 拡張不確かさ<br>( <i>k</i> =2)<br>(Bq/kg) | きの正味バッ<br>クグラウンドカ<br>ウント数 N'- | 試料がないと<br>きのバックグラ<br>ウンドカウント<br>数 Nb'* | バックグラウンド<br>測定時間* 秒 |
|----------------------------------------------------------------------------------------------------|--------|--------------------------|---------------------------------------------------|-------------------------|----------------------|-----------------|-------------------------|-----------------------------|---------------|---------------------------|-----------------------------|-------------------------------------|-------------------------------|----------------------------------------|---------------------|
| Ge検出器は横型を使用し、試料容器の円<br>筒側面を検出器に接触させて測定。                                                            | Cs-134 | 2.0648(10) y             | 個々のエネルギーを記<br>入する<br>563.25                       | 個々に記入する<br>8.36(3)      | 341307               | 4189            | 5810                    | 0.012273                    | 12.33         | 13.01                     | 96                          | 求め方は報告シート(不<br>確かさ)に記入する。<br>10     | 505                           | 2336                                   | 250973              |
| 容器中の放射性物質の空間分布の不均一<br>性を確認するため、容器を45度ずつ回転さ                                                         | Cs-134 | 2.0648(10) y             | 個々のエネルギーを記<br>入する<br>569.33                       | 個々に記入する<br>15.39(6)     | 341307               | 7559            | 6980                    | 0.022147                    | 11.89         | 12.55                     | 93                          | 求め方は報告シート(不<br>確かさ)に記入する。<br>6      | 870                           | 1987                                   | 250973              |
| せて8方向から測定。最終的にそれら8つの<br>スペクトルを加算して解析に使用。<br>0124127の字号使は、自作の土壌標準                                   | Cs-134 | 2.0648(10) v             | 個々のエネルギーを記<br>入する<br>604.72                       | 個々に記入する<br>97.63(6)     | 341307               | 48172           | 6430                    | 0.14114                     | 12.08         | 12.75                     | 94.4                        | 求め方は報告シート(不<br>確かさ)に記入する。<br>4.2    | 5252                          | 2440                                   | 25097               |
| 65-134,137の定量値は、日作の工場標準 -<br>線源との比較測定により決定。<br>Cs-134の定量値は、563, 569, 605, 796keV                   | Cs-134 | 2.0648(10) y             | 個々のエネルギーを記<br>入する<br>795.86                       | 個々に記入する<br>85.4(3)      | 341307               | 34852           | 3387                    | 0.102113                    | 12.26         | 12.93                     | 95.8                        | 求め方は報告シート(不<br>確かさ)に記入する。<br>4.3    | 3955                          | 1661                                   | 250973              |
| の4本の r 線を用いて得た値を加重平均して決定。<br>K-40については、上記の土壤標準線源を用                                                 | Cs-134 |                          | 定量値(平均値など)<br>を記入する。求め方の<br>詳細は表紙のコメント<br>欄へ記載する。 |                         |                      |                 |                         |                             |               |                           | 95.0                        | 求め方は報告シート (不<br>確かさ) に記入する。<br>4 1  |                               |                                        |                     |
| 14 いて求めたCs−134,137各 γ 線の検出効率 -<br>を指数関数の多項式でフィットしてエネル<br>ギー依存曲線を作成し、1461keVにおける                    | Cs-137 | 30.07(3) y               | 661.66                                            | 85. 1 (2)               | 341307               | 58427           | 5776                    | 0.171186                    | 16.79         | 16.85                     | 124.8                       | 来め方は報告シート(不<br>確かさ)に記入する。<br>4.5    | 6566                          | 2227                                   | 25097               |
| 検出効率を決定。この用途においてはCs-<br>134の各γ線に対してサム補正が必要であ                                                       | K-40   | 1. 277 (8) e+9 y         | 1460. 83                                          | 10. 67 (13)             | 341307               | 22532           | 1161                    | 0.066017                    | 55.22         | 55.22                     | 409                         | 求め方は報告シート(不<br>確かさ)に記入する。<br>29     | 8031                          | 629                                    | 250973              |
| り、主効半の実験値を用いて計算し補止。<br>試料と標準線源の組成と密度の違いに起<br>因する自己の収等の違いの補正は、実測し<br>たア線吸収係数を用いて計算し補正。添付<br>資料4を参照。 |        | 上記項目の<br>Table of Isotop | D出典を記入し<br>bes 8th 1998                           | ンて下さい<br>Update (Cs1340 | <br>の放出率のみJA         | EA核図表2010)      |                         |                             |               |                           |                             |                                     |                               |                                        |                     |

14

#### 不確かさ

(1)自作の土壤標準線源中のCs-134,137のBq数の不確かさ(1σ) Cs-134 Cs-137 2.06% 1.67%

この不確かさは主に 点線源に対するエネルギー依存検出効率曲線の不確かさ±1.5%と統計誤差による。 エネルギー依存曲線作成に使用した標準線源の強度の不確かさ(1σ)は±1.3-1.5%

(2)Cs-134,137についてはサム効果と自己吸収の影響はキャンセルされるので、不確かさは加算されない。

(3)K-40についても、サム効果は無視でき、自己吸収の影響が考慮された検出効率曲線を作成するので、

(3)に40にシリンが来ば無税でき、自己取取の影響が考慮された検回効準囲線を作成するので、 これらに起因する不確かさは加算されない。 しかし検出効率曲線作成の際にCs-134のサム補正が必要であり、その補正による不確かさ(最大1%程度) を考慮して各 γ線の検出効率の不確かさを決定した。 もっともK-40の1461keV 7線に対する検出効率の不確かさは、関数フィッティングに起因するところが大であり、 実験値とフィッティング曲線との残差から最終的に±3%と評価した。

(4) 最終的なCs-137濃度の不確かさは、(1)のBa数の不確かさと統計誤差のみから算出した。

(5)Cs-134濃度の不確かさは、まず最初に4本のγ線を用いて濃度とその不確かさを各々独立に算出し、 くいる。154歳度の「14歳2をするたち」 それらの加重平均ら誤差を求めた。 ここで、加重平均の際に、各々のγ線で求めた濃度の各不確かさに(1)のBq数の不確かさを加算せず、 統計誤差のみから得られた不確かさを用いて加重平均を行い、その後にBq数の不確かさを加算して、 最終的なCs-134濃度の不確かさを決定した。

(6)K-40濃度の不確かさは、検出効率の不確かさと統計誤差により算出した。

(7)これらの3核種では、γ線強度や半減期の誤差は最終的な濃度の値の不確かさにほとんど影響しない。

(8)不確かさの加算はすべて誤差の伝播式を用いて行った。

(9)上記の結果得られた不確かさを2倍して、最終的なk=2の不確かさを決定した。

### 添付資料 4:Lab 7 補足資料 計算の前提条件



**検出器からの距離(cm)** 3.0

| Descrip<br>Comme | otion:                    |         |          |     |       |            |         |            |
|------------------|---------------------------|---------|----------|-----|-------|------------|---------|------------|
| Units:           | Units: @mm C cm C in C ft |         |          |     |       |            |         |            |
| <br>Specify      | sample by its: 💿 Dim      | ensions | © Volume | сw  | eight |            |         |            |
| No.              | Description               | d.1     | d.2      | d.3 | d.4   | Material   | Density | Volume, ml |
| 1                | Beaker                    | 1.5     | 48       | 48  | 60    | nolvstvr 🖃 | 1.06    |            |
| 2                | Sample                    | 50      |          |     |       | drvdirt 💽  | 1.53    |            |
| 3                | Absorber 1                | 2       |          |     |       | acrvlic 💽  | 1.17    |            |
| 4                | Absorber 2                | 0       |          |     |       | (none) 📃 💌 | 0       |            |
| 5                | Source - Detector         | 3       |          |     |       |            |         |            |



検出器(Ge-P6:キャンベラ GC-2518) について,下記の前提で U8 線源で求めたもの(D) と、ISOCS で計算した効率曲線(C)を比較して示す.









添付資料5

#### 土壤放射能標準物質認証共同実験結果報告書(lab 14 補足資料)

2012年5月2日報告

今回配布試料の定量に使用した標準線源は自作の土壌標準線源で, Cs-134 あるいは Cs-137 を 含む溶液をそれぞれ土壌と混合し<sup>注)</sup>,2つの線源(Cs-134標準線源, Cs-137標準線源)を作製し た.溶液中の放射能濃度は,同じ溶液を用いて点線源を作製し,Ge検出器から77mmの距離で 市販の標準γ線源(点線源)と比較・測定し,決定した.

注) Cs-134 あるいは Cs-137 を含む溶液を,薄く広げた土壌の上に均一に散布して乾燥し,他の 土壌と均質に混合した(電話により確認).

以下に、定量値の不確かさを求める際に考慮した(1)市販の点線源の強度の不確かさ、(2) 点線源に対する Ge 検出器の検出効率曲線の不確かさ、(3)作製した土壌標準線源の線源強度の 不確かさ、(4)作製した土壌標準線源の不均一性の測定結果、(5)配布試料の不均一性の測定 結果、(6)土壌試料中の K-40 の 1461 keV y 線に対する検出効率の不確かさ、(7)配布試料と 作製した土壌標準線源の y 線吸収係数の測定結果、(8)吸収係数の違いに起因する自己吸収とカ スケードサムの違いの補正、についての補足説明を示す.

(1) 市販の点線源の強度の不確かさ

使用した標準点線源は2種類あり、線源強度の不確かさは以下の通り.

① Eu-152 線源 (JAERI Eu427):不確かさ±4% (3σ)

 ② 混合核種γ線源(DKD 製 GF-ML-M-7601 S/N: 1390-40):不確かさ±2.9%(2σ) (Am-241, Cd-109, Co-57, Cs-137, Y-88, Co-60 を解析に使用)

以後の計算では、線源強度の不確かさとして1σの値を採用し、各種不確かさを算出した.

(2) 点線源に対する Ge 検出器の検出効率曲線の不確かさ

上記2種類の点線源を用いて Ge 検出器の全エネルギーピーク検出効率曲線を作成した(図1). Cd-109, Cs-137 以外の核種についてはカスケードサムの補正を行った.補正係数の計算には,図 1に示した全効率を使用した.全効率曲線は,計算で求めた曲線を実験値に合わせて作成した. 補正の不確かさは実験値の不確かさに加算した.

全エネルギーピーク検出効率曲線は,120 keV 以上のエネルギー範囲では実験値を指数関数の 多項式で最小自乗フィットすることで作成し,100 keV 以下のエネルギー範囲ではγ線吸収係数 を用いて曲線を計算し,実験値に合わせた.

得られた全エネルギーピーク検出効率曲線は、実験値を±1.5%以内で良く再現しており、 $\gamma$ 線 エネルギー240~1400 keVの範囲における検出効率曲線の推定不確かさを±1.5%(1 $\sigma$ )と決定 した.

なお,2 種類の標準点線源から得られた検出効率の値が一本の効率曲線で良く再現された事実は,2 種類の標準点線源の線源強度の信頼性を間接的に証明している.



図1: 点線源に対する Ge 検出器の検出効率曲線.線源・検出器間距離 77 mm.

(3) 作製した土壌標準線源の線源強度の不確かさ

図1の検出効率曲線を用いて,作製した Cs-134, Cs-137 点線源の放射能量を決定し,点線源 及び土壌標準線源の作製に使用した溶液量の違いを補正した上で,土壌標準線源中の放射能量を 決定した.不確かさは,統計誤差と検出効率曲線の不確かさから算出した. Cs-134 についてはカ スケードサムの補正を行い,その不確かさも加算した.得られた Cs-134 及び Cs-137 土壌標準 線源中の放射能量の推定不確かさは以下の通り.(有効数字は2桁だが,3桁まで表示.)

Cs-134 :  $\pm 2.06\%$  (1  $\sigma$ ) Cs-137 :  $\pm 1.67\%$  (1  $\sigma$ )

(4) 作製した土壌標準線源の不均一性の測定結果

作製した土壌標準線源中の放射性物質の空間分布の不均一性を確認するため、以下の測定を行った.本実験では横型の Ge 検出器を使用し、U8 容器の円筒側面を Ge 検出器の前面に密着させて測定を行った.U8 容器を回転させて検出器に面する方向を変え、45 度間隔で 8 方向から測定し、U8 容器中の放射性物質の空間分布の不均一性を確認した.図2 に Cs-137 及び Cs-134 土壌標準線源に対する不均一性の測定結果を示す.Cs-137 の不均一性は、0 度の値が 2%程平均値より大きいものの、他の点の値は±0.5%以内で一致しており、非常に均一性が高い.一方、Cs-134 では±2%程度の不均一性が観測されたが、これも十分均一であると言える.土壌試料に対する検出効率の決定では、これら 2%の不均一性の影響を排除するため、8 方向から測定したスペクトルをすべて加算して解析に使用した.よって、これらの不均一性に起因する不確かさはゼロとした.



図2:作製した土壌標準線源中のCs-137 及びCs-134 の空間分布の不均一性の測定結果.

(5) 配布試料の不均一性の測定結果

(4)と同じ方法で配布試料の不均一性も確認した.(4)に比べて統計精度が悪いためはっきり したことは言えないが,試料 No.250 中の Cs-137 と Cs-134 の均一性は比較的良さそうである. 一方, No.250 中の K-40 は若干不均一性が見られる. 試料 No.002 と予備 4 については 90 度毎 に 4 点しか測定していないが, Cs-137 と Cs-134 の分布に若干の不均一性が観測された. また, No.250 の平均値と No.002,予備 4 の平均値の間にもそれぞれ 2~3%違いが見られ,試料間でも 若干の不均一性が観測された. 試料中の空間分布の不均一性の影響を最小にするため,解析には 8 方向(あるいは 4 方向)から測定したスペクトルをすべて加算して使用した. 解析ではこれら の不均一性に起因する不確かさはゼロとした.



図3:配布試料中のCs-137,Cs-134 及びK-40 の空間分布の不均一性の測定結果. 試料 No.250は45度間隔で8方向測定. 試料 No.002と予備4は90度間隔で4方向測定. 試料 No.250の平均値を100としてプロット.

(6) 土壌試料中の K-40 の 1461 keV y 線に対する検出効率の不確かさ

K-40 の土壤標準線源は作製しなかったため, K-40 の 1461 keV γ線に対する検出効率を, Cs-137 と Cs-134 の各 γ線に対する検出効率の実験値を使って検出効率曲線を作成することで 求めた.検出効率の実験値は,作製した土壌標準線源を測定して決定した. Cs-134 の各 γ線につ いてはカスケードサムの補正が必要であり,平均の全効率を使って簡易的に補正係数を計算し, 補正した.補正の不確かさは検出効率の各実験値に加算した.図4に Cs-137 と Cs-134 の各 γ 線に対する検出効率の実験値をプロットし,指数関数の多項式を最小自乗フィットして得られた 全エネルギーピーク検出効率曲線を示す. Cs-137 と Cs-134 の各 γ線に対する検出効率の値は一 本の曲線で良く再現されており,2つの土壌標準線源の線源強度の値の信頼性と Cs-134 に対す るカスケードサムの補正の信頼性を間接的に示している.実験値と作成した検出効率曲線との残 差から、1461 keV  $\gamma$ 線に対する検出効率の推定不確かさを±3%(1 $\sigma$ )と評価した.なお、この 検出効率曲線は K-40 の解析にのみ使用し、Cs-137 と Cs-134 の各  $\gamma$ 線については計数率を直接 比較することで線源強度を求めている.



図4: Cs-134 及び Cs-137 土壌標準線源を用いて作成した土壌線源に対する Ge 検出器の 全エネルギーピーク検出効率曲線. この曲線から K-40 の 1461 keV γ 線に対する検出効率 を求めた.

(7) 配布試料と作製した土壌標準線源のy線吸収係数の測定結果

容積試料の定量では、試料と同じ形状、組成、密度を持ち、同じ核種を含む標準線源があれば、 γ線の自己吸収やカスケードサムの補正はすべてキャンセルされるため補正の必要はない.しか し、今回作製した土壌標準線源と配布試料では、形状は同じだが組成と密度が異なるため、各々 の土壌に対するγ線吸収係数を実測し、組成と密度の違いの補正に使用した.

測定は, Eu-152 線源を Ge 検出器から 140 mm の位置に固定し,線源と検出器の間に配布試料,作製した土壤標準線源,空の容器を置いてそれぞれ測定を行い,γ線吸収係数を求めた.図5 に配布試料(No.250)と作製した土壌標準線源に対する線吸収係数の値をプロットする.

これらの実験値から線吸収係数のエネルギー依存曲線を作成するため、元素組成を SiO2 と仮 定し、密度をフリーパラメータとして線吸収係数を計算し、実験値を良く再現するエネルギー依 存曲線を作成した. 試料 No.250 では、密度を 1.50 g/cm3 としたときに実験値を良く再現した. 実際の試料の密度は 1.408 g/cm3 であり、この違いは SiO2 以外の元素が混じっていることに起 因すると考えられる. 100 keV 以下のエネルギー範囲で計算値が過小評価していることも同様の 理由と考えられ、恐らく原子番号が大きい元素が混じっていることが原因と思われる. 一方、標 準線源では密度を 0.95 g/cm3 としたときに実験値を良く再現した. 標準線源の実際の密度は 0.966 g/cm3 であり、低エネルギー側で計算値が若干過大評価していることを考えれば、有機物 などの軽元素が影響しているとも考えられる. 比較のため図 5 に水(H2O:密度 1.0)の線吸収 係数も示す. 100 keV 以上のエネルギー範囲では H2O も SiO2 もほぼ同じエネルギー依存性を示 しており、補正計算に使用する 600 keV や 1460 keV における線吸収係数を求める場合において は、組成の違いはほとんど問題とならず、SiO2 を仮定して作成したエネルギー依存曲線で実用上 問題ないと結論できる.



図5:配布試料(Soil No.250)と作製した土壌標準線源(Soil STD)に対するγ線の線吸 収係数の実測値.組成をSiO2と仮定して、密度を実験値に合うように調整して計算した線 吸収係数のエネルギー依存曲線を実線で示す.比較のためH2Oに対する線吸収係数のエネ ルギー依存曲線を可示す.

(8) 吸収係数の違いに起因する自己吸収とカスケードサムの違いの補正

(7)で求めた線吸収係数を使い,配布試料と作製した土壌標準線源それぞれに対して,Cs-134,Cs-137,K-40の各γ線に対する自己吸収を積分法により計算した.Cs-137の662keVγ線を例として具体的な数値を示すと,配布試料及び標準線源に対する自己吸収の割合はそれぞれ0.831,0.888,それらの比は0.935となった.つまり配布試料中の放射能の定量においては,標準線源を用いて決定した検出効率に0.935を掛けた値を検出効率として用いる必要がある.この比を自己吸収の補正係数とし,最終結果に反映させた.K-40の1461keVγ線に対する自己吸収の補正係数は0.954となった.

補正の不確かさは、使用した線吸収係数の不確かさと自己吸収計算に起因する不確かさが考え られる.線吸収係数は実測しているため、不確かさは数%程度と推測される.自己吸収計算につ いても、同じ計算をして比を取っているため、比の値に対する不確かさは十分小さい.ここでは 補正量 = (1-補正係数)の5%を自己吸収補正の不確かさとして、最終結果の不確かさに加算し た.

自己吸収が異なると、各試料に対する検出効率の値も変わるので、カスケードサム効果も各試料によって微妙に変化する.(6)において、土壌標準線源中のCs-134から放出される605keV γ線のカスケードサムによる計数損失は0.926と計算された.一方、配布試料については、自己 吸収が大きいため検出効率が小さくなり、その分カスケードサムによる計数損失も小さくなる. 検出効率が6%小さいとしてカスケードサムを計算すると、計数損失は0.930となった.これら2 つの計数損失の比1.005を試料の計数率に乗じ、自己吸収の違いに起因するカスケードサムの違いを補正した.補正量(上記の場合1.005-1=0.005が補正量)の10%を補正の不確かさとして、 最終結果の不確かさに加算した.

(9) 最終的な線源強度の不確かさ

以上の計算において、不確かさはすべて  $1\sigma$ の値を使用し、誤差の伝播式を用いて最終的な線 源強度の不確かさ( $1\sigma$ )の値を算出した.この不確かさの値を 2 倍して k=2 の不確かさとして 報告した.

以上

| 添付資料6:均質性試驗 | など複数の報告値を含めた測定値一覧表とバーチャート |
|-------------|---------------------------|
| 子番号のついたものが、 | 均質性試験など他の報告値.             |

| l.h.    | 核種     | z so    | ore    | 核種     | Z SO    | core   | 核種     | z so    | ore    |
|---------|--------|---------|--------|--------|---------|--------|--------|---------|--------|
| lab     | Cs-134 | classic | robust | Cs-137 | classic | robust | K-40   | classic | robust |
| 1       | 83.7   | -0.17   | 0.00   | 110.3  | -1.04   | -1.27  | 376.1  | -1.59   | -3.04  |
| 2       | 79     | -1.07   | -1.01  | 118    | 0.45    | 0.21   | 398    | -0.43   | -0.93  |
| 3       | 90.85  | 1.21    | 1.53   | 118.4  | 0.53    | 0.29   | 407.7  | 0.08    | 0.00   |
| 4       | 87     | 0.47    | 0.71   | 120    | 0.84    | 0.60   | 400    | -0.32   | -0.74  |
| 5       | 86.5   | 0.37    | 0.60   | 116    | 0.06    | -0.17  | 406    | -0.01   | -0.16  |
| 6       | 86.2   | 0.31    | 0.54   | 116.9  | 0.24    | 0.00   | 410.4  | 0.23    | 0.26   |
| 7       | 78.4   | -1.19   | -1.14  | 107    | -1.68   | -1.91  | 362    | -2.34   | -4.40  |
| 7–2     | 74.9   | -1.86   | -1.89  | 106    | -1.88   | -2.10  | 438    | 1.69    | 2.92   |
| 8       | 80.71  | -0.74   | -0.64  | 109.8  | -1.14   | -1.37  | 387.5  | -0.99   | -1.95  |
| 8-1     | 82.1   | -0.47   | -0.34  | 111.4  | -0.83   | -1.06  | 400    | -0.32   | -0.74  |
| 10-1    | 82.40  | -0.42   | -0.28  | 114.5  | -0.22   | -0.46  | 429.0  | 1.21    | 2.05   |
| 10-2    | 80.58  | -0.77   | -0.67  | 116.5  | 0.16    | -0.08  | 428.6  | 1.19    | 2.01   |
| 10-3    | 83.23  | -0.26   | -0.10  | 116.5  | 0.16    | -0.07  | 410.0  | 0.21    | 0.23   |
| 10-4    | 83.90  | -0.13   | 0.04   | 118.7  | 0.59    | 0.35   | 439.8  | 1.78    | 3.09   |
| 10-5    | 79.80  | -0.92   | -0.84  | 116.9  | 0.24    | 0.00   | 415.9  | 0.52    | 0.79   |
| 10      | 82.85  | -0.33   | -0.18  | 117.9  | 0.43    | 0.19   | 411.5  | 0.29    | 0.37   |
| 11      | 87.2   | 0.51    | 0.75   | 117    | 0.26    | 0.02   | 400    | -0.32   | -0.74  |
| 12      | 85.85  | 0.25    | 0.46   | 108.1  | -1.47   | -1.70  | 388.6  | -0.93   | -1.84  |
| 14-1    | 93.3   | 1.68    | 2.06   | 121.4  | 1.11    | 0.87   | 398    | -0.43   | -0.93  |
| 14-3    | 92.5   | 1.52    | 1.89   | 122.9  | 1.41    | 1.16   | 412    | 0.31    | 0.41   |
| 14      | 95.0   | 2.01    | 2.42   | 124.8  | 1.78    | 1.52   | 409    | 0.15    | 0.13   |
| データ数 p  | 21     |         |        | 21     |         |        | 21     |         |        |
| Average | 84.57  |         |        | 115.67 |         |        | 406.10 |         |        |
| SD      | 5.20   |         |        | 5.14   |         |        | 18.87  |         |        |
| RSD     | 6.2    |         |        | 4.4    |         |        | 4.6    |         |        |
| SD/√p   | 1.3    |         |        | 1.0    |         |        | 1.0    |         |        |
| Median  | 83.70  |         |        | 116.90 |         |        | 407.70 |         |        |
| NIQR    | 4.66   |         |        | 5.19   |         |        | 10.38  |         |        |
| RNIQR   | 5.6    |         |        | 4.4    |         |        | 2.5    |         |        |

Cs-134 は同一試験所の複数の値の差が、比較的に少ない.





K-40 は同一試験所の複数の値に、比較的差が見られる.



添付資料7:報告されたγ線スペクトル例

バックグラウンドを含むもの 2 例と Cs-134, Cs-137, K-40 γ 線の部分を拡大したいくつ かの例を示す.

Lab 5: 測定時間: 試料, バックグラウンドとも 200000 秒 チャンネル数: 4096



Lab 6: 測定時間, 試料:100000 秒, バックグランド:130000 秒 チャンネル数:8088



Lab 6 Cs-134 (605 keV)











Lab 2 Cs-134 563 keV, 569 keV ・・・・・定量には使用せず.







Lab 2 Cs-134 1038 keV, 1168 keV, (563+605) keV・・・・・定量には使用せず.





Lab 6 Cs-134 796 keV, 802 keV





Lab 8 Cs-134 605 keV 均質性試験における 4 時間測定(試料 2-2-2)

Lab 8 Cs-134 605 keV 共同実験における 10 時間測定(試料 1-1-2)







Lab 5 Cs-137 (662 keV)



Lab 6 Cs-137 (661 keV)



Lab 5 K-40 (1461 keV)





Lab 6 K-40 1461 keV

添付資料8 計算に基づく方法(LabSOCS)

Ge 半導体検出器の検出効率の校正方法には、測定試料と同一の条件の標準線源を用いて 決定する方法の他に標準線源を用いることなく計算によって効率を決定する手法がある. この手法のうち放射能分析用として Canberra 社が開発,販売しているソフトウェアに LabSOCS (Laboratory Sourceless Object Calibration Software)がある.日本国内で LabSOCS は、100 台程度の Ge 半導体検出器と共に出荷されており相当数の Ge 半導体検 出器の校正に活用されている.(情報提供:Canberra Japan)

野口ら(文献 1)によると、LabSOCSによって効率計算ができる Ge 半導体検出器はその検出器まわりにおける検出効率が予めモンテカルロ法で計算されており、三次元座標及 びエネルギー(40 keV~7 MeV)に対するレスポンス関数としてソフトウェアに組み込ま れている.測定試料に対する検出効率は、試料の位置、形状、マトリックスなどに応じて 細分化(1024 個)された微小体積に対する検出効率が計算される.さらに物質中における ッ線の減弱が補正されて、積分を行うことで検出効率が決定される.

Bronson ら (文献 2) によるバリデーションにより, LabSOCS で得られる効率の合成標 準不確かさは<150 keV が 7.1 %, 150-400 keV の範囲が 6.0 %, 400 keV を超える γ 線エ ネルギーでは 4.3 %と評価されている. Lab 7 が用いた定量に用いた γ 線は全て 400 keV を超える γ 線ピークを用いている. そのため, lab 7 における効率校正に起因する合成標準 不確かさを 4.3 %とした.

また,文献1においても標準線源を用いて決定した検出効率との比較が行われている. その結果,標準線源による検出効率との比は±5%以内で一致したものの,長期間室温保存 された Ge 半導体検出器の場合,比の中心値が 1.02 を示した.これは長期間の室温保存に より製造時と比較して Ge 結晶の不感層が増加したことによると推定されている.

参考文献

1. 野口正安、鈴木孝宏、酒井国博、村松勇:「線源不要の効率計算法 ISOCS による Ge 検 出器の効率の検証」、2p-2、144 頁、第 42 回アイソトープ・放射線研究発表会要旨集.

2. Frazier L. Bronson, Ram Venkataraman : Validation of the Accuracy of the LabSOCS Mathematical Efficiency for Typical Laboratory Samples, 46<sup>th</sup> Annual Conference on Bioassay, Analytical, and Environmental Radiochemistry, Nov. 12-17, 2000, Seattle, Washington.

3. K. Abbas, F. Simonelli, F. D'Alberti, M. Forte, M. F. Stroosnijder, Reliablity of two calculation codes for efficiency calibrations of HPGe detectors, Applied Radiation and isotopes, 56(2002)703-709.

添付資料9 検出効率の校正における関数フイッティングの不確かさ

標準試料を用いて関数フイッティングによってピーク効率の校正を行う場合は、その不確かさは用いた参照標準の不確かさと近似効率曲線の差を合成して求めることができる. 多くの試験所では何らかの標準物質を用いて計測器の校正をしている.土壌試料の測定では、日本アイソトープ協会製の放射能標準ガンマ体積線を用いると最も簡易に計量トレーサビリティを確保した校正が実現できると考えられ、本共同実験においても半数以上の試験所が利用している.この際、ピーク効率 *EFF* は数 100keV 以上のエネルギーでは、通常、エネルギーを *E* として次のような 2 次関数にフイットさせてから求められている(文科省マニュアルでは直線回帰が用いられている). Lab 4 の校正曲線の例を下記に示した.

$$Ln(EFF) = A + B \times Ln(E) + C \times Ln(E)^{2}$$

図 Lab 4 のピーク校正曲線, H=50mm. 200keV 以上の測定値に対してフイッティン グした.



一般に、測定値 $x_i$ を次のような二次関数 $y_i$ に当てはめたときの測定のばらつきは $s_y$ で与えられる.

$$s_{y} = \sqrt{\frac{1}{N-3} \sum_{i=1}^{N} (y_{i} - A - Bx_{i} - Cx_{i}^{2})}$$

上記の校正データを用いて 200keV 以上のエネルギーに対して関数フィットの後で上式

を計算すると、 $s_y = 3.0 \times 10^{-4}$  (Bq/kg)と計算された. このばらつきは通常十分に小さく不確かさ成分としては無視できる程度である.

上の式では自由度が小さすぎると考えられる場合は、同時の実施された高さが異なる試料の測定データや過去の測定データを利用することが可能である。例えば、3本の校正曲線のばらつきを上式から $s_{1y}$ ,  $s_{2y}$ ,  $s_{3y}$ と求めた場合は、平均化したばらつきは分散で表すと次のようになる。

$$s_p^2 = (v_1 s_{1y}^2 + v_2 s_{2y}^2 + v_3 s_{3y}^2) / (v_1 + v_2 + v_3)$$

ここで、 $v_i$ はそれぞれの測定の自由度を表し、通常、 $v_1 = v_2 = v_3 = N - 3$ であるので

$$s_p^2 = (s_{1y}^2 + s_{2y}^2 + s_{3y}^2)/3$$

で計算できる.

一方, Lab 14 では, 点線源を用いて校正するが, 線源・検出器間距離を 77 mm として測定して次のような検出効率曲線を得た. 上記の例で用いたよりも多くのエネルギーにおいて測定すると, K-40 のエネルギー付近で検出効率の増加が認められた.



また, Lab 7 ではモンテカルロ法を用いて検出効率曲線を計算した.結果は下図のように示されるが, Lab 14 で観測された K-40 付近における上に凸の特徴は見られない.



以上の例から,現状では K-40 付近における検出効率のかたよりについては結論を得るに 必要なデータは確認できておらず,Lab 14 の例は検出器の個別の特性とも考えられる.Lab 14 では測定した効率曲線が用いて校正され,フイッティングによるかたよりは発生しない と考えられるので,本報告では,Lab 4 のように個別に報告された場合(表2参照)を除い てフイッティングによるかたよりは無視できるものと考え,不確かさの算出には加えなか った.

添付資料10:減弱係数,試料密度(比重)等

土壌試料では,135.0gの充填,U8容器の内径 4.8 cm,充填高さ5 cm から求めた密度 が必要である.密度は質量吸収係数に乗じて,線減弱係数を求めるのに用いられる.

報告データでは、土壌成分や密度の見積もりにより小さな違いはあるがその差はわずか で、試験所によりランダムに求められていると考えられるので吸収補正の不確かさの範囲 内に含まれるとした.下記に報告されたデータを示す.

#### Lab 5

| • | 標準線源の媒質 | : | 水, | 密度 | : | 1.00 | g/cm <sup>3</sup> |
|---|---------|---|----|----|---|------|-------------------|
|---|---------|---|----|----|---|------|-------------------|

|                      | 質量減弱係数(cm²/g) | 線減弱係数(/cm) |
|----------------------|---------------|------------|
| $605 { m ~keV}$      | 8.94.E-02     | 8.94.E-02  |
| $662 { m ~keV}$      | 8.58.E-02     | 8.58.E-02  |
| $1461 \mathrm{~keV}$ | 5.81.E-02     | 5.81.E-02  |

#### ・測定試料の媒質:土壌,密度:1.45 g/cm3

|                 | 質量減弱係数(cm²/g) | 線減弱係数(/cm) |
|-----------------|---------------|------------|
| $605 { m ~keV}$ | 8.11.E-02     | 1.18.E-01  |
| $662 { m ~keV}$ | 7.87.E-02     | 1.14.E-01  |
| 1461 keV        | 6.35.E-02     | 9.21.E-02  |

### Lab 11

| ・標準線源  |            |                        |            |
|--------|------------|------------------------|------------|
| 核種     | エネルギー(keV) | 密度(g/cm <sup>3</sup> ) | 線減弱係数(/cm) |
| Cs-134 | 604.66     | 1.036                  | 0.090885   |
| Cs-137 | 661.64     | 1.036                  | 0.087195   |
| Cs-134 | 795.76     | 1.036                  | 0.080094   |
| K-40   | 1460.75    | 1.036                  | 0.059162   |
|        |            |                        |            |

#### · 土壤試料

| 核種     | エネルギー(keV) | 密度(g/cm <sup>3</sup> ) | 線減弱係数(/cm) |
|--------|------------|------------------------|------------|
| Cs-134 | 604.66     | 1.508                  | 0.119410   |
| Cs-137 | 661.64     | 1.508                  | 0.114582   |
| Cs-134 | 795.76     | 1.508                  | 0.104921   |
| K-40   | 1460.75    | 1.508                  | 0.075949   |

#### Lab 8

1. 標準試料の密度及び線減衰係数

| 核 種    | エネルキ、-(keV) | 密度(g/cm <sup>3</sup> ) | 線減衰係数(/cm) |
|--------|-------------|------------------------|------------|
| Cd-109 | 88.03       | 1.061                  | 0.1873     |
| Co- 57 | 122.06      | 1.061                  | 0.1606     |
| Co- 57 | 136.47      | 1.061                  | 0.1527     |
| Ce-139 | 165.85      | 1.061                  | 0.1406     |
| Cr- 51 | 320.08      | 1.061                  | 0.1096     |
| Sr- 85 | 514.00      | 1.061                  | 0.0899     |
| Cs-137 | 661.64      | 1.061                  | 0.0809     |

| Mn- 54 | 834.83  | 1.061 | 0.0725 |
|--------|---------|-------|--------|
| Y - 88 | 898.02  | 1.061 | 0.0701 |
| Co- 60 | 1173.21 | 1.061 | 0.0619 |
| Co- 60 | 1332.47 | 1.061 | 0.0580 |
| Y - 88 | 1836.13 | 1.061 | 0.0488 |

・密度は、使用した標準線源(アルミナ)の質量及び高さより算出した.

・線減衰係数は、以下の式より算出した.

- $\mu = \rho \times \{0.6023/M \ (2 \times \mu Al + 3 \times \mu O) \}$ 
  - μ:線減衰係数
  - $\rho$ : 試料密度
  - M: 試料の原子量(アルミナ=101.96)
  - μAI: アルミニウム原子の全相互作用断面積

μο:酸素原子の全相互作用断面積

#### 2. 土壌試料の線減衰係数

| 核種     | エネルキ ~(keV) | 線減衰係数(/cm) |
|--------|-------------|------------|
| Cs-134 | 569.32      | 0.1265     |
|        | 604.7       | 0.1231     |
|        | 795.85      | 0.1082     |
|        | 801.93      | 0.1078     |
| Cs-137 | 661.66      | 0.1182     |
| K-40   | 1460.75     | 0.0783     |

・線減衰係数は、以下の式より算出した.

 $\mu = \rho \times \exp[-2.361 \cdot 0.39490 \times \log(E/400) \cdot 0.06914 \times \{\log(E/400)\}2]$ 

- μ:線減衰係数
- $\rho$ : 試料密度
- E:核種のエネルギー
- Log:自然対数を表す

文献: "光子相互作用断面積の近似式と質量減衰係数" 野口正安, RADIOISOTOPES, 36, 49-56(1987)

Lab 7

・比重 1.53 g/cm<sup>3</sup>

・土壌試料構成元素:質量%

 $\label{eq:H} \begin{array}{ll} H:0.36, \ C:2.14, \ O:49.62, \ Na:0.84, \ Mg:1.6, \ Al:7.1, \ DSI:27.38, \ K:2.37, \\ Ca:4.21, \ Ti:0.34, \ Fe:4.04 \end{array}$ 

付属資料 12 土壌標準物質中の<sup>90</sup>Sr, Pu (Pu 同位体, 同位体比)の共同分析

日本分析化学会放射能分析用土壤標準物質で認証値が設定された放射性核種は $^{40}$ K,  $^{134}$ Cs,  $^{137}$ Cs であるが,社会的にはその他の放射性核種,特に $^{90}$ Sr, Pu について関心が高い. $^{90}$ Sr は半減期(T<sub>1/2</sub>) 28.79 年の $\beta$ 線放出核種,Pu は質量数 238, 239, 240 の同位体  $^{238}$ Pu (T<sub>1/2</sub>: 87.7 年),  $^{239}$ Pu (T<sub>1/2</sub>: 24110 年), $^{240}$ Pu (T<sub>1/2</sub>: 6561 年)が $\alpha$ 線放出核種,質量数 241 の同位体  $^{241}$ Pu(T<sub>1/2</sub>: 14.290 年)が $\beta$ 線放出核種であり,Ge 半導体検出器による $\gamma$ 線スペクトロメトリーでは $^{90}$ Sr, Pu を定量することは不可能である.これらを定量するためには目的核種を化学的に分離精製した後,それぞれ $^{90}$ Sr, $^{241}$ Pu は $\beta$ 線計測を, $^{238}$ Pu, $^{239}$ Pu, $^{240}$ Pu は $\alpha$ 線スペクトロメトリーにより測定する必要がある.なお,Pu 同位体のなかで1000 年以上の比較的長い半減期を示す $^{239}$ Pu, $^{240}$ Pu は質量分析計で測定することも可能である.このように $^{90}$ Sr,Pu が分析可能な施設と高度な分析技術を有する機関が限定されているのが現実であり,共同分析法による認証値算出に必要な機関の協力を得るのは困難であった.幸いにも $^{90}$ Sr 測定は2機関,Pu 測定には3機関の協力が得られたので,共同分析を実施した.実施機関数が少ないため,認証値ではなく参考値ではあるが分析化学会放射能分析用土壌認証標準物質中の $^{90}$ Sr,Pu の測定値を公表することは有意義と考えられる.

<sup>90</sup>Sr 測定

<sup>90</sup>Sr 測定を実施した 2 機関は土壌から酸抽出した <sup>90</sup>Sr を化学分離後, <sup>90</sup>Sr の壊変核種で ある <sup>90</sup>Y(T<sub>1/2</sub>: 64 時間)を分離し低バックグラウンドガスフローカウンターで測定した. 報告値を以下に示す.

| Lab | 供試料 (g) | <sup>90</sup> Sr (Bq/ kg) |
|-----|---------|---------------------------|
| А   | 100     | $0.20~\pm~0.071$          |
| В   | 10      | $0.33~\pm~0.23$           |
|     | 10      | $0.40~\pm~0.23$           |
|     | 10      | $0.38~\pm~0.24$           |
|     | 10      | $0.44~\pm~0.23$           |
|     | 10      | $0.41~\pm~0.32$           |

表 12-1 <sup>90</sup>Sr 分析結果

Pu 測定

Pu は 3 機関が測定した. 全ての機関は土壌試料から酸抽出した Pu を化学分離後,測定 した. 測定方法は全て異なり, α線スペクトロメトリーが 1 機関 (Lab C), ID-ICP-MS に よる測定が 1 機関 (Lab D), TIMS による測定が 1 機関 (Lab E) であった. Lab C 及び Lab D は化学分離前に内標準として <sup>242</sup>Pu を既知量添加した. 各機関からの報告値を以下に 示す. Lab E は TIMS 測定による Pu 同位体比の精密な測定を行った.

表 12-2 Pu 分析結果(Lab C: 陰イオン交換分離/α線スペクトロメトリー)

| Lab | 供試料 (g) | <sup>238</sup> Pu (Bq/ kg) | <sup>239+240</sup> Pu(Bq/ kg) |
|-----|---------|----------------------------|-------------------------------|
| С   | 50      | ND( $0 \pm 0$ )            | $0.0180~\pm~0.0044$           |

表 12-3 Pu 分析結果(Lab D: 抽出クロマトグラフィ/ID-ICP-MS)

| Lab | 供試料 (g) | <sup>239</sup> Pu (Bq/ kg) | <sup>240</sup> Pu(Bq/ kg) | <sup>239+240</sup> Pu(Bq/ kg) |
|-----|---------|----------------------------|---------------------------|-------------------------------|
| D   | 50      | $0.0141~\pm~0.0003$        | $0.011~\pm~0.001$         | $0.025~\pm~0.001$             |

表 12-4 Pu 分析結果(Lab D: 陰イオン交換分離/TIMS)

| Lab | 供試料 (g) | <sup>240</sup> Pu/ <sup>239</sup> Pu | <sup>238</sup> Pu/ <sup>239</sup> Pu | <sup>241</sup> Pu/ <sup>239</sup> Pu | <sup>242</sup> Pu/ <sup>239</sup> Pu |
|-----|---------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Е   | 135     | $0.1804~\pm~0.0092$                  | < 0.05                               | < 0.003                              | < 0.005                              |

以上の <sup>90</sup>Sr, Pu の分析結果から,認証書に表 12-5 の参考値を追記する.

表 12-5 参考値

| 標準物質<br>番号 | 核種                                    | 放射能濃度 <sup>注12-1)</sup><br>Bq/kg   | 分析方法                         |
|------------|---------------------------------------|------------------------------------|------------------------------|
|            | 90 $ m Sr$ <sup>注12-2)</sup>          | $0.20 \pm 0.07$<br>$0.40 \pm 0.25$ | 化学分離/低バックグラウン<br>ドガスフローカウンター |
|            | <sup>238</sup> Pu                     | $ND(0\pm 0)$                       | 陰イオン交換分離/α線スペ                |
|            | $^{239+240}Pu$                        | $0.0180 \pm 0.0044$                | クトロメトリー                      |
|            | <sup>239</sup> Pu                     | $0.0141 \pm 0.0003$                |                              |
| JSAC 0471  | <sup>240</sup> Pu                     | $0.011 \pm 0.001$                  | 抽出クロマトクラフィ<br>/ID-ICPMS      |
| JSAC 0472  | <sup>239+240</sup> Pu                 | $0.025 \pm 0.001$                  |                              |
| JSAC 0473  | 核種                                    | 同位体比注12-1)                         | 分析方法                         |
|            | <sup>240</sup> Pu / <sup>239</sup> Pu | $0.1804 \pm 0.0092$                |                              |
|            | <sup>238</sup> Pu / <sup>239</sup> Pu | < 0.05                             | 陰イオン交換分離/TIMS                |
|            | <sup>241</sup> Pu / <sup>239</sup> Pu | < 0.003                            |                              |
|            | <sup>242</sup> Pu / <sup>239</sup> Pu | < 0.005                            |                              |

<sup>注12-1)</sup> 参考値及び同位体比で**±に続く数値は測定の標準不確かさ又は実験標準偏差である。** <sup>注12-2)</sup> 測定は2試験所で独立に実施され、結果は並列に記述した。

共同分析に参加した機関を順不同で以下に示す. 御協力に深謝します.

(財)環境科学技術研究所,(国)気象研究所,(独)日本原子力研究開発機構,

(財) 日本分析センター

The Japan Society for Analytical Chemistry

### 日本分析化学会

### 認証書

### **Certified Reference Material**

| JSAC 0472 (U8 容器, 30 m | mm 高さ) |
|------------------------|--------|
| JSAC 0473 (U8 容器, 10 m | mm 高さ) |

### 土壤認証標準物質 放射能分析用

本標準物質は、セシウム 134 (<sup>134</sup> Cs) 、セシウム 137 (<sup>137</sup> Cs) 、カリウム 40 (<sup>40</sup> K) の放射能濃度が認証された乾燥土壌試料で、JIS Q 0035 (ISO Guide 35) に規定される共同実験方式を用いて認証値を決定したもので、 $\gamma$ 線スペクトロメトリーによる放射能分析方法の妥当性の確認、測定器の精度管理などに用いることができる.また、参考値としてストロンチウム 90 (<sup>90</sup> Sr) 、プルトニウム (Pu) の放射能濃度、Pu 同位体比を示した.

**認証値** 基準日時(日本時間) 2012 年 2 月 1 日 0 時 0 分 0 秒

| 標準物質<br>番号             | 成分                | 放射能濃度<br>Bq/kg | 拡張不確かさ<br>( <i>k</i> =2) <sup>注 1)</sup><br>Bq/kg | 室間再現<br>標準偏差<br>( <i>SD</i> ) <sup>注2)</sup><br>Bq/kg |
|------------------------|-------------------|----------------|---------------------------------------------------|-------------------------------------------------------|
| ISAC 0471              | <sup>134</sup> Cs | 85.3           | 5.9                                               | 4.8                                                   |
| JSAC 0471<br>JSAC 0472 | <sup>137</sup> Cs | 115            | 8                                                 | 5                                                     |
| JSAC 0473              | $^{40}$ K         | 396            | 25                                                | 15                                                    |

<sup>注1)</sup> 拡張不確かさは、合成標準不確かさに包含係数 k=2 を乗じたもので、信頼の水準約 95 %に 相当する.

<sup>注2)</sup>室間再現標準偏差は認証値決定のために共同実験に参加した試験所の測定値の平均値を基準 として求めた標準偏差である.

#### 参考値

| 標準物質<br>番号 | 核種                                    | 放射能濃度 <sup>注3)</sup><br>Bq/kg      | 分析方法                         |
|------------|---------------------------------------|------------------------------------|------------------------------|
|            | 90 <b>Sr</b> 注4)                      | $0.20 \pm 0.07$<br>$0.40 \pm 0.25$ | 化学分離/低バックグラウン<br>ドガスフローカウンター |
|            | <sup>238</sup> Pu                     | $ND(0\pm 0)$                       | <br> 陰イオン交換分離/α線スペ           |
|            | <sup>239+240</sup> Pu                 | $0.0180 \pm 0.0044$                | クトロメトリー                      |
|            | <sup>239</sup> Pu                     | $0.0141 \pm 0.0003$                |                              |
| JSAC 0471  | <sup>240</sup> Pu                     | $0.011 \pm 0.001$                  | 抽出クロマトグラフィ<br>/ID-ICPMS      |
| JSAC 0472  | <sup>239+240</sup> Pu                 | $0.025 \pm 0.001$                  |                              |
| JSAC 0473  | 核種                                    | 同位体比 <sup>注3)</sup>                | 分析方法                         |
|            | <sup>240</sup> Pu / <sup>239</sup> Pu | $0.1804 \pm 0.0092$                |                              |
|            | <sup>238</sup> Pu / <sup>239</sup> Pu | < 0.05                             | 陰イオン交換分離/TIMS                |
|            | <sup>241</sup> Pu / <sup>239</sup> Pu | < 0.003                            |                              |
|            | <sup>242</sup> Pu / <sup>239</sup> Pu | < 0.005                            |                              |

<sup>注3)</sup> 放射能濃度及び同位体比で±に続く数値は測定の標準不確かさ又は実験標準偏差である. <sup>注4)</sup> 測定は2試験所で独立に実施され,結果は並列に記述した.

#### 使用上の注意

- 1. 試料は U8 容器(内径 48 mm)に均質になるように充填した後、中蓋及びクッションボールを 入れ、上蓋を閉めて軽く固定されているので、容器を故意に振動・転倒させて試料を攪拌す ることを避ける.
- 2. U8 容器に充てんした試料高さ 50 mm, 30 mm, 10 mm は公証値であり,必要に応じて高さ を測定することを推奨する.
- 3. 本標準物質は、放射性核種を含むため取り扱い及び廃棄には注意する.

#### 保管上の注意及び認証値の安定性

本標準物質は、冷暗所に保管する.

日本分析化学会では定期的に安定性試験を行い、その結果から有効保存期間及び有効保存期 限を決めて、学会の会誌又はウエブサイト等に公表するので、参照下さい.

#### 標準物質の調製方法及び均質性評価

採取した土壌試料を、熱風循環式定温乾燥器にて 35 °C,24 時間乾燥し、その後、アルミナボールミルを用いて粉砕、これを篩分けし、粒径 (63 - 250)  $\mu$ m のものを選別した.この後、全試料を、拡翼式混合機を用いて混合し、続いて V 型混合機で再混合し、試料の均質化を図っ

た. 試料は, U8 容器(内径 48 mm)に 50 mm 高さ, 135.0 g で 255 本, 30 mm 高さ, 80.0 g で 50 本, 10 mm 高さ, 30.0 g で 50 本を瓶詰めした. 試料の充填前に 6 カ所から試料を採取 し Mn, Cu, Zn 濃度を ICP-AES により測定したところ均質性には問題が見られなかった. また, 底質調査方法(昭和 63 年 環境庁環水管 127 号)に準じて乾燥減量(水分)を測定したところ 1.5 %であった.

放射能濃度の均質性は,試料調製時に化学分析を実施した試料とほぼ同位置から2本ずつ計 12本分の試料を採取して,U8容器に50mmの高さで135gを充填した試料を用いて評価した. 試料中の<sup>134</sup>Cs,<sup>137</sup>Cs,<sup>40</sup>K測定は2機関で実施され,不均質性はJISQ0035に記述される手順を用いて評価され,不確かさに合成された.

#### 認証値の決定方法

認証値は、下記の12の試験所による Ge 半導体検出器を用いた γ線スペクトロメトリー<sup>文献1)</sup> による共同実験結果を JIS Q 0035 の手順に沿って統計的に処理して得られたものである. すな わち,製作した試料から無作為に 12 個を抜き取り、参加試験所に配付した. 認証値は 12 の報 告値の平均値であり(棄却したデータはなかった),拡張不確かさは、共同実験の平均値の標 準不確かさ、検出効率校正の標準不確かさ、自己吸収補正に含まれるかたより、均質性試験か ら推定された標準不確かさを合成して包含係数を乗じて算出した.また、室間再現標準偏差(*SD*, 報告値の標準偏差に等しい)を記載した.なお、認証値は、充てん高さが異なる試料を含めて、 充てん高さ 50 mm の試料を用いて決定した.詳細は開発成果報告書を参考のこと.

#### 共同実験の実施期間

認証値決定のための共同実験は 2012 年 3 月から 4 月の間に行われた. 参考値決定のための共 同実験は, 2012 年 3 月から 7 月の間に行われた.

#### 計量トレーサビリティ

認証値の決定において、測定器の校正には計量トレーサビリティが確保された手順が用いられた. すなわち、国家標準へのトレーサビリティが取れた参照標準が用いられたほか、1 試験所では<sup>40</sup>K について KCl の学術的データ、1 試験所では妥当性が実証されている計算によって行われた. また、核データや自己吸収補正など、学術的データに基づく補正については不確かさを考慮した. 詳細は開発報告書を参照のこと.

#### 参考値について

参考値に示した核種については、分析を実施した機関数が少なく、認証値を算出することはできな かったが、本土壌標準物質の性状を理解するために有効と考え参考値として記載した. 関連する情報 として下記が参考になる.

1)[日本の環境放射能と放射線] http://www.kankyo-hoshano.go.jp/kl\_db/servlet/com\_s\_index. 2) K.Hirose *et. al*: [Recent trends of plutonium fallout observed in Japan : plutonium as a proxy for desertification], J. Environ. Monit., 5 (2003) 302-307. **認証日付** 2012 年 5 月 29 日

#### 認証値決定に協力した分析機関

東京都市大学工学部

- 東京都市大学原子力研究所
- 明治大学理工学部
- 京都大学原子炉実験所
- (大共)高エネルギー加速器研究機構放射線科学センター
- (財)日本分析センター
- (公社)日本アイソトープ協会
- (独)放射線医学総合研究所
- (独)産業技術総合研究所
- (独)日本原子力研究開発機構
- エヌエス環境株式会社
- 株式会社環境総合テクノス
  - 以上 12 機関

#### 参考値決定に協力した分析機関

- (財)環境科学技術研究所
  (国)気象研究所
  (独)日本原子力研究開発機構
  (財)日本分析センター
  以上4機関
- 生産及び頒布機関 公益社団法人 日本分析化学会
- 調製・均質性試験機関環境テクノス株式会社(北九州市戸畑区中原新町 2-4)エヌエス環境株式会社(東京都港区西新橋 3-24-9)東京都市大学原子力研究所(川崎市麻生区王禅寺 971)

認証責任者
 公益社団法人 日本分析化学会
 標準物質委員会
 委員長 久保田 正明

作業委員会: 放射能標準物質作製委員会

|               | 氏名                                                                                                                                             | 所 属                                                                                              |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 委委委委委事事員員員員局局 | 平井 昭<br>田<br>平澤 仲<br>知<br>二<br>本<br>松<br>慶<br>生<br>岡<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田 | 東京都市大学<br>(公財)日本国際問題研究所<br>(独)産業技術総合研究所<br>(公財)日本適合性認定協会<br>(株)テルム<br>(公社)日本分析化学会<br>(公社)日本分析化学会 |

文献 1) 平成 4 年改訂 放射能測定シリーズ No.7「ゲルマニウム半導体検出器によるガンマ線 スペクトロメトリー」

#### 改定履歴

2012年10月15日 認証値及び不確かさを訂正すると共に、参考値を追加した.

問合せ先 公益社団法人 日本分析化学会 〒141-0031 東京都品川区西五反田1丁目26-2 五反田サンハイツ 304号 Tel. 03(3490)3351 Fax 03(3490)3572 ホームページ:http://www.jsac.or.jp/srm/srm.html e-mail:crmpt@ml.jsac.or.jp 添付資料 14 均質性に対する試料充てん量の影響

#### 1. 追加試験の背景

JIS Q 0031 に「認証書は、認証標準物質の使用者が採取するサブサンプルの最小の量又 は数を記述することが望ましい.これには、それより少ないサブサンプルの採取がその特 性の認証値及びそれに関連する不確かさの記述の使用を無効にするという警告を伴うこと が望ましい.」と記載されており、認証標準物質にとって最小試料量の記載は欠かせない要 件である.

本土壤標準物質(JSAC0471, JSAC0472, JSAC0473)の開発では、均質性試験をU8 容器に土壌試料 135 gを5 cmの高さで充填したJSAC0471 で行っており、JSAC0471 と 比較して充填量が少ないJSAC0472(試料充填量:80g,充填高さ3 cm)及びJSAC0473 (試料充填量:30g,充填高さ1 cm)に対して、JSAC0471と同等の均質性が得られてい るか否かについては未確認であり、最小試料量の評価としては不十分であったことは否定 できない.そこで、JSAC0473(試料充填量:30g,充填高さ1 cm)10本(No.67, No.70, No.75, No.80, No.85, No.90, No.95, No.100, No.105, No.110)を用いた均質性試験を実施 した.結果は下記に示すように、試料充填量が少ないJSAC0473とJSAC0471との間には <sup>134</sup>Cs, <sup>137</sup>Cs, <sup>40</sup>K放射能濃度に均質性に有意な差がないことが確認できた.

#### 2. 測定内容及び結果

土壌(充填高さ 1 cm, 充填量: 30 g) 10 試料を東京都市大原子力研究所に設置された Ge 半導体検出器で 2013 年 7 月 3 日から 11 日にかけて 86400 秒測定した.

<sup>134</sup>Cs(604 keV), <sup>137</sup>Cs(661 keV), <sup>40</sup>K(1461 keV)の測定結果(単位:cps/kg)を以下に示 す. 測定値は 2013 年 7 月 1 日に減衰補正した.

| Sample No      | $^{134}Cs$ | 計数誤差   | $^{137}Cs$ | 計数誤差   | $^{40}\mathrm{K}$ | 計数誤差   |
|----------------|------------|--------|------------|--------|-------------------|--------|
| 1cm-No.67      | 0.8802     | 2.40~% | 1.5541     | 1.69~% | 0.3966            | 3.25~% |
| 1cm-No.70      | 0.8837     | 2.53~% | 1.5154     | 1.73~% | 0.3943            | 3.35~% |
| 1cm-No.75      | 0.9222     | 2.35~% | 1.6169     | 1.64 % | 0.3693            | 3.47~% |
| 1cm-No.80      | 0.8845     | 2.52~% | 1.5406     | 1.69~% | 0.3720            | 3.44~% |
| 1cm-No.85      | 0.8472     | 2.45~% | 1.4909     | 1.74 % | 0.3727            | 3.39~% |
| 1cm-No.90      | 0.8887     | 2.41~% | 1.5807     | 1.69 % | 0.3835            | 3.43~% |
| 1cm-No.95      | 0.8540     | 2.44~% | 1.5606     | 1.70~% | 0.4226            | 3.18~% |
| 1cm-No.100     | 0.9055     | 2.40~% | 1.5530     | 1.68 % | 0.3825            | 3.34~% |
| 1cm-No.105     | 0.8586     | 2.46~% | 1.5275     | 1.71 % | 0.3718            | 3.42~% |
| 1cm-No.110     | 0.8621     | 2.42~% | 1.5851     | 1.69~% | 0.3962            | 3.36~% |
| Mean           | 0.8787     |        | 1.5525     |        | 0.3862            |        |
| Std. Dev.      | 0.0237     |        | 0.0365     |        | 0.0167            |        |
| $RSD/\sqrt{n}$ | 0.85~%     |        | 0.74~%     |        | 1.36~%            |        |
| Sb+r           |            | 2.81~% |            | 2.35~% |                   | 4.31~% |
| $S_{ m r}$     |            | 2.10 % |            | 1.70 % |                   | 3.36 % |
| Sbb            |            | 1.15~% |            | 1.63~% |                   | 2.70~% |

表 測定結果(単位:cps/kg)

ここで, sb+r は測定値の標準偏差, sbb は瓶間均質性に基づく標準偏差, sr は併行精度である.測定値の標準偏差(sb+r)と sbb, sr は以下の関係がある.

## $s_{b+r}^2 = s_r^2 + s_{bb}^2$

ガンマ線測定における計数誤差を $s_k と考え$ , $s_{bb}$ を上式から求めた.今回測定した充填高さ 1cm 試料の均質性の標準不確かさ( $s_{bb}$ )は、 $^{134}Cs$ では1.15%、 $^{137}Cs$ では1.63%であり、 充填高さ5cmの試料の測定から求めた標準不確かさ1.6%と同等であった.また同様に $^{40}K$ の平均値の推定標準偏差(RSD/ $\sqrt{n}$ )は1.36%、 $s_{bb}$ は2.70%と求められた. $^{40}K$ の $s_{bb}$ は 充填高さ5cmの試料の放射能濃度測定から求めた $^{40}K$ の $s_{bb}3.10$ %とほぼ同等であった.ま た、 $^{40}K$ の平均値の推定標準偏差1.36%は、充填高さ5cmの試料の均質性に基づく標準不 確かさ1.6%とほぼ同等であった。

以上の結果から, JSAC0473 (試料充填量: 30 g, 充填高さ1 cm) においても, 均質性 に基づく不確かさを拡大する必要はないと考えられる.