

ラマン顕微鏡

1 はじめに

ラマン散乱分光法は、近赤外や中赤外の吸収分光法と ともに、化学組成のイメージング手法として利用されて いる。加えて、物質の濃度、結晶相、応力/歪み、そし て結晶性についても判別が可能であり、同じサンプルか ら様々な視点のイメージを得ることができる。

2 原理

物質に光を照射すると散乱光が発生する。そのほとん どは照射光と同じ波長のレイリー散乱光であるが、わず かに波長の異なる散乱光も含まれている。これをラマン 散乱光と呼ぶ。レイリー散乱光とラマン散乱光のエネル ギー差は、物質内の原子間振動のエネルギーに対応して いる。そのため、散乱光を分光したスペクトルには化学 結合情報が反映される。ラマンスペクトルの横軸には、 エネルギーに比例する単位として波数(波長の逆数)を 用い、レイリー散乱光の波数をゼロとした波数差(ラマ ンシフト)で表す。

ラマン顕微鏡では、単波長の励起光源として主にレー ザー光が用いられる。光学顕微鏡の対物レンズを通して レーザー光を試料の微小領域に照射し、同じ対物レンズ を通して試料からの後方散乱光を集光する。

ラマンイメージを得るためにはレーザースポットが自 動的かつ正確に試料上を走査する機構が必要で、一般的 には自動ステージを使ったポイントマッピングが行われ ている。300 mm×300 mmの駆動範囲を持つ大型ス テージも利用されており、測定領域の制限は少ない。顕 微鏡光学系を生かした高い空間分解能が達成でき、非常 に微弱なラマン散乱光でも検出することができる。マッ ピングの所要時間は、一般的には1ポイント当たり1~ 10 s のオーダであるが、10 ms 程度の高速データサンプ リングの手法も開発されている。

ポイントマッピング以外のデータサンプリング手法と して、ラインスキャニングやグローバルイメージングも 利用されている¹⁾。また、最近、*XY*方向にレーザース キャンする手法も実用化された。この機構を使えば、対 物レンズを交換することなく、ステップサイズに合わせ てレーザースポットサイズを広げることができる。自動 ステージと組み合わせることにより、比較的大きなス テップサイズであっても、深さ空間分解能を生かした正 確なマクロラマンイメージを得ることができる。

ラマンイメージングは,三次元(*X*, *Y*, *Z*)の任意の

組み合わせで実行することができる。加えて,時間分解 や熱走査のような他の測定操作と組み合わせることもあ る。二次元(XY)の表面イメージを対象にすることが 多いが,他にも,一次元の深さ方向分析(Z),二次元 光学的断面測定(XZ あるいは YZ),三次元体積マッ ピング(XYZ)があり,それぞれ目的に合わせて利用 されている。

3 特徴(長所・短所)

ラマン顕微鏡による測定は一般に光学顕微鏡下で行わ れ、大気中での非破壊・非接触イメージングが可能とい う長所がある。また、特別な前処理も必要としない。さ らに、可視レーザー光を分析プローブとして利用する場 合、空間分解能約1µmのラマンイメージを簡単に取得 することができる。一方、短所として、ラマン散乱強度 がレイリー散乱の百万分の一程度と非常に微弱であるこ とがあげられる。このため、ラマン顕微鏡では、感度が 低い、あるいは競合現象である蛍光発生の影響を受け る、といった問題点が指摘されてきた。しかし、近年で は、レーザーをはじめとする光学部品の進歩と共焦点型 顕微光学系の採用により感度が向上し、試料から発生す る蛍光の影響も軽減されている。

4 得られる画像とその解釈

ラマンスペクトルは物質の指紋とも呼ばれ,結晶構造 や分子構造に対応した固有の波形を示す。互いに干渉し ないラマンバンドの強度を使って,構成成分毎のラマン イメージを作成することができる。また,多変量解析な どの高度なアルゴリズムを用い,わずかなスペクトル変 化を画像化する技術も利用されている。図1は,多変 量解析により作成したラマンイメージと光学顕微鏡イ メージとを合成したものである。試料は黒い異物が混入 したメモ用紙で,紙の成分であるセルロース(紫)の中 に,異物である酸化チタンマイクロ微粒子の分布 も,アナターゼ型(赤)・ルチル型(緑)の区別も含め て明瞭に捉えられている。このように、ラマンスペクト ルに含まれる豊富な化学情報によって,有機物質・無機 物質の分布を一度の測定で同時に取得することができる。

5 アプリケーション事例

5・1 医薬品:錠剤中の活性薬剤の評価

創薬研究では、わずかに得られる微小結晶粒の測定が 必要とされる。さらに、同じ分子構造であっても結晶化

光学顕微鏡イメージにカーボン(青),アナターゼ型酸化チタン (赤),ルチル型酸化チタン(緑),セルロース(紫)のラマンイ メージを合成した。

図1 黒い異物が混入したメモ用紙のラマンイメージング

の条件によって複数の結晶構造を持つものがあり,結晶 形によって薬理活性が異なることもある。一般には X 線回折法による結晶構造解析が行われているが,μmサ イズの結晶粒子を測定するには空間分解能が足りない。 そのため、ラマン顕微鏡を使った微小結晶粒の結晶形ス クリーニングが行われている²⁾。錠剤の製剤プロセスや 保管環境(湿度,温度,圧力)により活性薬剤の分散状 態や結晶形が変化する場合があり、ラマンイメージング はその評価手法にも応用されている³⁾⁴⁾。

5・2 半導体:ナノスケール薄膜の表面応力イメージ

集積回路(IC)の微細化に伴い,性能不良や故障の 要因となりうる応力や歪みの管理が重要となっている。 また,電子移動度を向上させる技術として,ウェハ上薄 膜やIC チップの局所応力の制御も必要である。しか し,測定領域が微小であるため,ウェハ反り評価法や X線回折法は適用が難しい。一方,半導体材料である シリコン(Si)の結晶格子振動(フォノン)に由来する ラマンバンドは,半値幅が小さく強い強度を持つ。結晶 格子に応力がかかると振動数がわずかに変化することか ら,ラマンピークのシフト量を使って応力分布イメージ を作成することができる。

実例として、De Wolf⁵⁾が、局所酸化膜技術により作 成した 3 μm 角、および 3 μm 幅のライン構造を持つ Si 素子や、銅基板に接合した Si チップの断面の応力イ メージをラマン顕微鏡で測定している。ただし、応力に よるピーク波数シフトは約 500 MPa でわずか 1 cm⁻¹ であり、このような分析には高いスペクトル分解能を有 する装置が必要である。他の例として、励起レーザー波 長が短くなるほど半導体材料の吸収係数が大きくなるこ とを利用し、測定深さを制御することも行われている。 特に、紫外レーザーは、nm オーダの表層を測定する場 合に有効である。

5·3 生体試料

有機物の成分分布の情報が得られることから、生体試 料分析においてもラマンイメージングへの期待は高い。 しかし、複雑系である生体試料から着目している化学成 分について選択的に情報を抽出するためには、様々な工 夫が必要になる。また、試料調整の過程における生分解 を防ぎ、できるだけ生きた状態を維持することも重要で ある。イメージ情報の重なりをなくすために薄膜にする ことも行われている。寺田ら6はラットの眼球の切片を 凍結乾燥し網膜部位のラマンイメージを測定し、染色法 観察像との比較により、光受容体付近の化学組成分布を 捉えていることを確認している。また、生体試料では、 試料ダメージや試料からの自家蛍光の影響を避けるた め、近赤外レーザーが利用される。一例として、YAG レーザー(1064 nm)によるバクテリア1個体の細胞内 イメージングが報告されている7)。また、選択的に標的 物質のイメージを測定するために、共鳴ラマン効果やラ マン標識を利用する場合もある。例えば、細胞内に金属 ナノコロイドを導入した際に金属表面で起こる増強効果 (surface enhanced raman spectroscopy: SERS) を利用 した、細胞内の薬物分布測定が報告されている8)9)。

文 献

- 1) 中田 靖, 内原 博:分光研究, 58, 84 (2009).
- T. Kojima, S. Onoue, N. Murase, F. Katoh, T. Mano, Y. Matsuda : *Pharm. Res.*, 23, 806 (2006).
- E. Lee : "Infrared and Raman Spectroscopic Imaging", Edited by R. Salzer, H. W. Siesler, p.377 (2009), (Wiley-VCH Verlag GmbH, Germany).
- G. Z. Papageorgiou, D. Bikiaris, E. Karavas, S. Politis, A. Docoslis, Y. Park, A. Stergiou, E. Georgarakis : *AAPS Journal*, 8, E623 (2006).
- 5) I. De Wolf: Spectroscopy Europe, 15/2, 6 (2003).
- N. Terada, N. Ohno, S. Saitoh, Y. Fujii, H. Ohguro, S. Ohno : *Microsc. Res. Tech.*, **70**, 634 (2007).
- M. Ando, M. Sugiura, H. Hayashi, H. Hamaguchi : Appl. Spectrosc., 65, 488 (2011).
- C. Eliasson, A. Loren, J. Engelbrektsson, M. Josefson, J. Abrahamsson, K. Abrahamsson : *Spectrochim. Acta, Part A*, 61, 755 (2005).
- I. Nabiev, A. Baranov, I. Chourpa, A. Beljebbar, G. D. Sockalingum, M. Manfait : J. Phys. Chem., 99, 1608 (1995).

〔㈱堀場製作所 中田 靖〕