ぶんせきの	泉
	赤外線放射温度計を用いた月の観測
	埼玉県立春日部女子高等学校 (教論)鈴木 文二
	(地球科学部) 福原 育代, 室井 千尭, 三枝 千春, 小船 有美, 高松 由佳, 榎本 仁美, 郡司 歩直美, 長谷川 千桂, 大岡 莉央, 高橋 真生, 牧田 里美, 山出 果歩, 黒沢 奈央, 染谷 玲希, 綱島 芙美, 川端 ひ芳子, 田口 志保野, 赤坂 有紀, 梅津 美希, 大倉 彩咲, 平井 彩恵

7.0

1 はじめに

手にとって見る、調べる、測定することが不可能な対 象をとり扱うのが天文学である。古くから、測定・観測 機器は肉眼のみであったが、19世紀半ばにタゲレオタ イプの写真が発明され、より深い(遠い)宇宙の観測が 可能になった。そして、次の革命的な発明である CCD によって、銀河系の外側に広がる宇宙の扉を開けること ができるようになった。同時に、可視光線だけでなく、 X線,紫外線,赤外線,電波という様々な電磁波を測 定できる機器が登場した。多波長でとらえた天体の姿は 驚きに満ちており, 天文学を発見の時代へと導いた。一 方で,そのような先端科学の躍動感あふれる進歩に対し て、初等教育現場の天文学は、太陽の動き、星座の星ぼ し、月の満ち欠けなど、近代の位置天文学から抜け出し きれていない。また、身の回り主義的な実験・観察を主 体とする理科教育も、遠い天体を測定することを阻んで いるかのように思える。

本稿は、比較的容易に入手できる「赤外線放射温度計」 を用いて、月面温度を測定する試みの紹介である。この 取り組みは、筆者の勤務する学校の地球科学部の活動と して行われた。研究の発端は、気象の授業において雲底 温度を測定する実習であった。水蒸気を含んだ空気塊が 上昇すると断熱膨張して温度が低下し、露点温度を下回 ると雲が発生する。その高度は数百 m から数千 m であ り、直接測定できない高さである。ところが、非接触型 温度計と呼ばれる放射温度計は、物体から放射される赤 外線を測定して温度を算出する。雲から赤外線放射で雲 底温度が測定できれば、地表温度との差から乾燥断熱変 化を使って高度を求めることができる。その雲の観測の 合間に、下弦の月に温度計を向けたところ、わずかな温 度上昇が認められた(図1)。背景大気に対して約0.5 ℃であったが、日周運動によって月が温度計視野を横

2 大気の窓

厚い大気に覆われている地球は、電磁波の様々な波長 が大気中の分子によって吸収・散乱されるため、特定の 波長域でしか天体からの信号を受け取ることができない (図 2)¹⁾。この波長域のことを「大気の窓」と呼び、可 視光線、赤外線、電波などの天体観測は、その窓に合わ せて行われている。可視光の窓は大きく開いているた め、晴れていれば、太陽、月、惑星、恒星を観測するこ とができる。ただし、昼間の空は大気分子の散乱で明る いため(青空)、恒星などを見ることはできない。一方 で、赤外線および電波の波長域においては、太陽光の散 乱の影響は少なく、水蒸気の影響のない波長帯を選ぶこ とによって、昼夜を通しての観測が可能である。

天体からの電磁波の放射は、太陽を含め黒体放射と考 えてよい。惑星、衛星などは、自ら光り輝いてはいない が、太陽光を受けて熱せられ、その温度に見合った電磁 波を放出し平衡状態を保っている(放射平衡)。地球の 平衡温度は -18 ℃(255 K)であるが、現在の地球平

The Lunar Observation by Radiation Thermometer.

図2 地表からの電磁波で観測可能な「大気の窓」 (Estes and Senger¹⁾を元に作成)

図 3 中間赤外領域における大気の窓と黒体放射 (大気透過率は Estes and Senger¹⁾ を元に作成)

均気温が15℃(288K)であるのは、水蒸気などの温 室効果によるものである。惑星の表面温度が数百Kの 場合の黒体放射は、波長が数µmから10µm程度の中 間赤外線の波長でピークを持っている。この波長域で大 気の窓は開いており(図3)¹⁾、地表からの観測が可能で ある。ただし、少なからぬ水蒸気とオゾンによる吸収が あり、10µmより長い波長では二酸化炭素による吸収が 顕著になっている。この二酸化炭素による吸収こそが、 現代的な問題となっている温室効果の波長域である。

月の平衡温度は、約1 °C (274 K) であるため、この 中間赤外線領域での観測が可能である。夜昼の温度は -100 °C (173 K) から 130 °C (403 K) と激しく変化 するが、この波長域に収まる範囲で赤外線を放射してい る²⁾。また、太陽光に含まれる中間赤外線に対する月表 面のアルベド (反射率) は、0.01 以下であることが知 られており³⁾、月からの赤外線は黒体放射(熱的赤外線) とみなすことができる。

図4 使用した放射温度計

温度という概念は直感的に理解できる物理量の一つで あり、可視光線以外で天体をとらえるという現代的な醍 醐味がある。黒体放射の式も高校の学習事項である。中 間赤外線領域の大気吸収は、いま注目されている温室効 果に関連している。惑星環境を考える上で、熱平衡とい う考え方は重要であり、新しい学習指導要領では前面に 出ている。すべてにおいて、従来の天体観測という枠を 越えた新しいアプローチになりうると考えられた。さら に決定的なことは、放射温度計の数万円という価格であ る。産業用途が拡大してきたため、特別な予算を組まな くても、手の届くレベルになってきたのである。

3 測定機器の検定

今回の研究で使用した放射温度計は、堀場製作所の IT-550L である(図4)。公表されている仕様は以下の とおりである。

測定可能温度範囲: -50 ℃~500 ℃ 温度表示分解能:0.1 ℃ 測定視野:約2° 波長感度域:8~16 μm

サンプリング間隔は最少で1秒,インターフェイス は RS-232C であるが USB 変換アダプタを介して,パ ソコンに簡単に繋げられる。附属ソフトウェアを使って エクセル形式でデータを取り込んで保存ができる。

月からの信号は、背景大気に対して差が小さいと見込まれるため、機器の精度の検証を行った。水槽に汲みおいた水の温度を連続測定した結果を図5に示す。仕様どおりに 0.1 ℃ の精度が出ていることを確認した。天体観測に用いられる赤外線観測機器は、機器の温度雑音

図5 放射温度計の安定性

を減らすため、液体窒素などで冷却するのが通例である が、もちろんハンディタイプの温度計には装備されてい ない。放射温度計は、機器温度の変化を内部センサーで 感知し、フィードバック回路で逐次補正している。強い 赤外線が入ると過補正となり、安定するまでに数秒間か かるようであるが、観測には問題ないと考えた。

次に波長特性と測定視野の問題がある。前者は検定す る装置・設備がないため、仕様を信頼するしかない。8 ~16 µm の大気分子の吸収は、主に水蒸気、オゾン、二 酸化炭素であるが、変動量の大きなものは水蒸気であ る。通年の観測を整理してみると、夏場と冬場ではかな りの差異が認められた。良質のデータが取得できたの は、安定した好天の続く乾燥した冬場であった。後者に ついては実験で検証した。仕様に書かれている温度計の 視野2°に対して、月の視直径は約0.5°である。視野内 での感度分布、正確な視野直径を求めることは、非常に 重要である。熱源として暖房用ハロゲンヒーターを用い 実験を行った。ヒーターは直径 35 cm であったので, 校舎内の直線廊下の遠方 40 m 先に置くと, 月の視直径 と同程度になる。台車に載せたヒーターを5秒ごとに、 10 cm ずつ移動させて温度測定を行った(図 6)。一次 元の測光機器の感度分布は、多くの場合は中心の感度が 高いガウス分布となるが、温度計も同じであることが判 明した(図7)。また、移動させた距離から、視野直径 は仕様にほぼ等しい約2°であることも確認された。視 野直径については、背景温度と一致する境界で定めるよ りも、感度の半値幅で定義すべきだが、それほど違いは なかった。実際の観測では視野直径は定数となるため, 絶対値を厳密に求めるのでなければ、仕様どおりの値を 使っても問題はない。なお、温度計メーカーである堀場 製作所に確認したところ,1mの距離で焦点を結ぶレン ズ設計であるとの返答があった。無限遠にある月の場合 に、どのような視野になるかは不明だそうだが、レンズ 設置の位置から逆算すると2°という値は妥当のようで

図 6 放射温度計の感度特性の実験概要(白黒模様が10 cm ご との移動ガイドとなっている)

図7 放射温度計の感度分布

ある。

4 解析方法

工場における製品管理,油調理の油温確認などの一般 的用途に使用するため、放射温度計からの出力は、セル シウス温度(℃)である。黒体放射とみなせる物体から の赤外線放射量の強弱を比較するためには、セルシウス 温度*t*を絶対温度*T*(K)に換算し、ステファン・ボル ツマンの式を用いてフラックス*E*(Wm⁻²)を求める。

$$T = t + 273.15$$

 $E = \sigma T^4$
 $\sigma = 5.67 \times 10^{-8} (W m^{-2} K^{-4})$
.....ステファン・ボルツマン定数

しかし,図7で測定されたヒーターの温度は,その ものからの赤外線だけでなく,背景の室内温度37℃か ら放出される赤外線*E*。も含んでいる値である。した がって、ヒーターのみの赤外線量 E。は、

 $E_{\rm o} = E - E_{\rm s}$

次に、放射温度計の感度分布は平坦でないため、視野 中央で測定した値を採用する。さらに、温度計視野の直 径は2°であるが、測定対象であるヒーターの視直径は 0.5°であるため、面積比率から赤外線強度は1/16 に なっていることを考慮する。実際の月は楕円軌道であ り、視直径 d が変化するため、真の赤外線の放射量 E_p は、

 $E_{\rm p} = E_{\rm o} \times (2/d)^2$

以上の手順で,ヒーターのみの赤外線量を求め,再び ステファン・ボルツマンの式を適用し,40m離れた ヒーターの温度を求めたところ169℃であった。ヒー ターを至近距離で直接測定した温度は173℃であり, 十分な精度で測定がなされ,計算手法も正しいことがわ かった。

5 観 測

観測装置の概要は図8のとおりである。望遠レンズ 付きデジタルカメラを,放射温度計と平行になるように 調整し,導入のためのファインダーとして使用する。日 周運動によって,月が温度計の視野中心を通過するよう にセットする。月の通過時間は6分ほどであるが,前 後の大気の温度を測定する必要があるため,10分ほど の測定時間とする。

実際の観測例を図9に示す。ほぼ満月に近い月を観 測したためS/Nが非常に良い例である。月が赤外線放 射温度計の中心を通っていない4例,ほぼ中心を通っ た3例の観測が入っている。しだいに背景大気の温度 が下がってきていることもわかると思う。解析は視野中 心を通過したデータを用い,大気温度の変化を一次式で 近似して差し引く。また,観測時の視直径を用いて面積 比の補正を行う。この日の赤外線強度は1308 W m⁻² で,月面温度は117 ℃(390 K)と求められた。月の昼 側の温度は太陽直下点において130 ℃程度であり,放 射温度計の観測は月面平均温度を求めていることから, 測定値は整合性あるものと考えられる。

観測は、三日月、上弦の月、満月、下弦の月など、輝 面比(昼の部分の割合)の異なる月を追い続けて行われ た。結果を表1に示す。位相角とは、地球から観測時 の太陽と月の角度である。新月は0°、上弦の月は90°、 満月は180°、下弦の月は270°と表される。可視光での 月の明るさは等級で表されることが多い。そのため、赤 外線強度 *E*_pのとき、次の式を使って赤外線等級 mag と した。

 $mag = -2.5 \cdot \log(E_p)$

図8 観測装置の概要

図 9 月面温度の観測例(2009年12月1日)

表1において、12回の観測のうち5回の観測を精度 が悪いとした。特に、2010年9月14、17日の観測 は、同程度の位相角の観測にくらべて約1mag暗い。 これは、10µmよりも長い波長で吸収帯を持つ水蒸気の 影響であると考えられる。それでは、条件のよい際の観 測は、どのくらいの精度だったろうか。絶対値ではな く、同一日に複数回測定を行った際の結果で議論をして みる。2009年12月25日の10回の観測の平均二乗誤 差は、温度で3.9℃、等級では0.06magであった。写 真測光の精度は0.1mag、CCDでは0.01mag程度であ るので、温度計という簡易的な測光装置としては、かな りよい精度であると言える。

6 砂団子モデルによる実験

遠く離れた月の温度測定だけでなく、モデル実験も試

新日 3月11日	位相角 (°)	視直径 (°)	視直径 補正量	赤外線強度(Wm ⁻²)		月面平均温度		赤外線等級	月の高度	データ
11000000000000000000000000000000000000				観測値	補正値	(K)	(°C)	mag	(°)	の精度
2009年 9月24日	67.6	30.3	15.68	3.26	51.13	173.3	-99.9	-4.27	21.36	×
12月1日	163.9	31.9	14.15	92.40	1307.53	389.7	116.5	-7.79	55.88	Ø
12月2日	176.3	32.7	13.47	27.86	375.19	285.2	12.1	-6.44	24.47	×
12月 8日	258.1	32.4	13.72	28.10	385.46	287.1	14.0	-6.46	19.68	Ø
12月21日	50.8	29.8	16.22	4.00	64.86	183.9	-89.2	-4.53	35.44	0
12月22日	61.7	29.8	16.22	7.00	113.51	211.5	-61.6	-5.14	36.61	0
12月25日	94.9	30.8	15.18	25.14	381.62	286.4	13.3	-6.45	45.83	O
2010年7月21日	124.1	30.9	15.08	6.88	103.76	206.8	-66.3	-5.04	22.17	×
9月14日	77.5	31.4	14.61	4.63	67.62	185.8	-87.3	-4.58	28.91	0
9月17日	112.2	30.2	15.79	12.28	193.89	241.8	-31.3	-5.72	27.32	0
9月21日	155.3	29.7	16.32	27.90	455.46	299.4	26.2	-6.65	41.71	×
9月22日	165.6	29.1	17.00	16.57	281.77	265.5	-7.6	-6.12	24.77	×

表1 観測結果

みた。温度計の感度測定実験に用いたヒーターで、月の 模型を暖める実験である。模型の素材候補として、岩石 と砂(校庭の砂)の温度変化の違いを調べてみた。表面 温度は放射温度計,裏面はデジタル温度計(1℃精度) を差し込んで変化を調べた。当たり前のことだが、岩石 は色の濃い黒いものほど熱吸収が大きい。ところが、砂 はどの岩石よりも温度変化が大きく、砂は表面に熱がた まりやすいことがわかった。砂粒同士の接触面が狭いた め、熱が伝導しにくいためである。これは、焼けつくよ うな砂浜の砂を掘り起こすと、下の方は案外冷たいこと からでも知られている。

月を含めて多くの天体表面は、「レゴリス」と呼ばれ る大小の石片(砂と言ってもよい)で覆われている。そ こで、砂で月模型を作ることにした。砂を固めて作る芸 術作品(砂像)があり、それに使われている接着剤は 「木工用ボンド:水=1:1」である。しかし、天体表面 は接着剤ではなく、重力によって砂が引き留められてい る。そこで、「さらさら状態の砂」と「接着剤で固めた 砂」の熱特性を測ってみたところ、特に大きな問題は見 られなかった。

月模型の製作手順は次のとおりである(図10)。

- ① 砂と調合した接着剤をペースト状になるまで混ぜる。
- ② 内径 21 cm の半球型発泡スチロールの内側にラッ プを敷く。
- ラップの上に、厚さが1.5 cm になるように砂を押 しつける。
- ④ 外径 18 cm の半球型発泡スチロールを砂に押し入れる。
- ⑤ 全体をひっくり返し、ラップをとり一昼夜ほど乾燥 させる。
- ⑥ 乾燥した半球二つを接着し、凹凸をやすりで削る。

図10 砂団子型月模型の制作

図11 砂団子による実験

砂団子型月模型を芯まで砂で作らなかったのは,乾燥 途中で自重変形・崩壊することを恐れたからである。ま

表2 位相角による赤外線強度の実験

位相角(°)	30	60	90	120	150	180
赤外線強度 (W m ⁻²)	0	1.2	5.3	11.6	20.9	27.2

た,基礎実験で接着剤は表面で固まり,内部には水がた まりやすいことがわかったからである。

実験にあたって, さらに次のような工夫をした。宇宙 空間に浮かぶ, 大気のない月は急激に冷えるはずであ る。室内実験では, 岩石や砂の表面に接する空気が暖ま り, 冷却に時間がかかる。そこで, 扇風機の風を模型に あて, 空気が循環しやすくした(図11)。ヒーターの角 度を変え(位相角を変化させ), 砂団子から放出される 赤外線強度を放射温度計で測定した(表2)。

7 結果と考察

実際の月と実験で使用した模型とでは、大きさや、熱 源の温度の違いから、絶対値に差が生じるのは当たり前 である。ここで注目すべき点は満月と半月の赤外線強度 の比である。観測では、満月前で1308 W m⁻²、半月が 382 W m⁻²で、約3.4 倍である。実験では、表2 に示 すように満月が27.2 W m⁻², 半月が5.3 W m⁻², こち らは約5.1倍となった。ちなみに、可視光線の比率は約 21 倍と大きな値である。ここで、赤外観測、モデル実 験、可視光線の強度を等級で表し、可視光線の等級にス ケールを合わせたものが図12である。観測結果と実験 は、非常によく一致している。砂団子型月模型は、完成 度の高い月の赤外線放射モデルであると言える。可視光 線の等級変化と赤外線での観測・実験の変化を比較する と、位相角依存性は赤外線のほうが緩やかである。この ことは、月には大気や水はないが、ある程度の熱は表面 から一定の深さまで伝わり、徐々に赤外線を放射して冷 えてゆくことを示している。ちなみに、太陽定数は約 1370 W m⁻² である。満月に近い 2009 年 12 月 1 日の 観測から求めた赤外線強度は、1308 W m⁻² であった。 この二つから、単純に月のアルベドを求めると、約 0.05 となる。可視光のアルベドは、0.07 であり4)、熱収 支の基本的なデータを観測できていると思われる。

8 おわりに

手に持てる装置を使った観測としては、おそらく世界 初の観測,解析方法を確立した。また、砂団子型月模型 を製作し、その実験にも成功を収めた。月の赤外線観測 は昼夜を問わないことから、女子高校生のテーマとして は都合がよい。固定された架台、天体ドームがないた め、運搬とセッティングに手間がかかり、観測回数を増 やすことはなかなか難しい。しかし、この研究論文⁵⁾を 完成させた後、さらに観測・実験は進化が続いている。 背景大気の変動をリアルタイムで測定するため、同じ機

図12 月の赤外線等級,可視光等級,およびモデル実験の結果

種の温度計を並べて使い,2 チャンネルで温度を測定で きるようにした。これによって,2011年12月の月食時 の温度変化を見事にとらえることができた⁶⁾。また,位 相角をより細かな角度で測定をするとともに,砂団子を 自転させる装置を工夫した。さらに,解析方法について は,水蒸気による吸収量の補正も考案した。これは,高 層気象のデータから,上空の絶対水蒸気量を推定して独 自の吸収係数を求めるというものである。

本稿で紹介した試みは、筆者によって国際学会で報告 がなされ、予算が限られる発展途上国においては、大学 教育にも活用できるとして脚光を浴びた⁷⁷。新しい挑戦 は、大きな一歩を踏み出したと思う。生徒ともに、太陽 系の謎の解明に迫れる研究に高めていきたいと考えてい る。

文 献

- 1) J. E. Estes, L. W. Senger (ed) : "Remote Sensing Techniques for Environmental Analysis", (Hamilton Publ.), (1974).
- 2) 松井孝典編:岩波地球惑星科学講座"比較惑星学", (1997),(岩波書店).
- 3) 関口朋彦ほか、「はやぶさミッション目的小惑星 Itokawa の中間赤外線観測:サイズと表層特性」、日本天文学会春季 年会、2006.
- 4) 国立天文台編:"理科年表", (2010), (丸善).
- 5) 第10回全国高校生理科・科学論文大賞 受賞作品集,「未来 の科学者との対話 X」,日刊工業新聞社,2012.
- 6) 春日部女子高校・地球科学部,「月面温度変化」,日本天文 学会ジュニアセッション,2012.
- B. Suzuki: "The measurement of the Luna's thermal infrared rays", 11th Asian-Pacific Regional IAU Meeting, 2011.

鈴木文二 (Bunji SUZUKI) 埼玉県立春日部女子高等学校 (〒344-8521 埼玉県春日部市粕壁東 6-1-1)。東 京学芸大学卒。≪現在の研究テーマ≫太陽 系天体の分光, 偏光観測。≪主な著書≫ "カラー版 天文学入門"(岩波ジュニア新 書)。

E-mail:suzukibn@da2.so-net.ne.jp