Abstract − Analytical Sciences, 36(1), 81 (2020).
Co-precipitative Preparation of a Sulfonated Cellulose-magnetite Hybrid Sorbent for the Removal of Cu2+ Ions
Özgür ARAR
Department of Chemistry, Faculty of Science, Ege University, Izmir, 35040, Turkey
A novel sulfonated cellulose-magnetite (Fe3O4) composite sorbent was prepared and applied for the removal of Cu2+ ions from an aqueous solution. It was characterized by infrared spectroscopy, X-ray fluorescence, elemental analysis, SEM, VSM and X-ray photoelectron spectroscopy. The effect of the sorbent dose, initial solution pH, and temperature on Cu2+ removal were studied. The removal of the Cu2+ was completed in 15 min, and the sorption kinetics of Cu2+ was found to follow a pseudo-second-order kinetic model. An equilibrium test demonstrated that sorption of Cu2+ onto a hybrid sorbent agreed well with the Langmuir adsorption model for a maximum adsorption capacity of 4.2 mg/g. Moreover, the optimum pH for Cu2+ removal was found to be ≥4. Furthermore, the thermodynamic parameters reveal the feasibility, spontaneity and endothermic nature of the sorption process. In addition, Cu2+ ions can be desorbed from the sorbent with a 0.5 M H2SO4 solution.
J-STAGE:
View this article in J-STAGE