Analytical Sciences


Abstract − Analytical Sciences, 33(5), 591 (2017).

Fabrication of Water-soluble Fluorescent Polymeric Micelles for Selective Detection of Hg2+ in Blood Serum
Hong WANG, Jian CHEN, Yongxiang HONG, Kun LV, Maolin YU, Peisheng ZHANG, Yunfei LONG, and Pinggui YI
Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
In this study, amphiphilic diblock copolymers were designed and synthesized via the incorporation of reversible addition-fragmentation chain transfer radical polymerization (RAFT) and a subsequent grafting technique. Subsequently, Hg2+-sensitive water-soluble fluorescent polymeric micelles (FNs) were prepared by a reprecipitation strategy. The spectroscopic characteristics demonstrate that the fluorescein isothiocyanate (FITC) was successfully linked into the polymer. Due to the promoted reaction of desulfurization cyclization by Hg2+, the fluorescence of fluorescein in FNs was obviously quenched. The as-prepared FNs showed admirable Hg2+-sensitivity (detection limit: 54 nM), excellent water-solubility and high selectivity. In addition, FNs were successfully used to determine Hg2+ in blood serum. We expected that the as-prepared FNs could perform potential applications in imaging, sensing, and bioanalytic chemistry.