Abstract − Analytical Sciences, 31(6), 469 (2015).
A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection
Li Juan LI, Xue TIAN, Xiang Juan KONG, and Xia CHU
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
A G-quadruplex-based, label-free fluorescence assay was demonstrated for the detection of adenosine triphosphate (ATP). A double-stranded DNA (dsDNA), hybridized by ATP-aptamer and its complementary sequence, was employed as a substrate for ATP binding. SYBR Green I (SG I) was a fluorescent probe and exonuclease III (Exo III) was a nuclease to digest the dsDNA. Consequently, in the absence of ATP, the dsDNA was inset with SG I and was digested by Exo III, resulting in a low background signal. In the presence of ATP, the aptamer in dsDNA folded into a G-quadruplex structure that resisted the digestion of Exo III. SG I was inserted into the structure, showing high fluorescence. Owing to a decrease of the background noise, a high signal-to-noise ratio could be obtained. This sensor can detect ATP with a concentration ranging from 50 μM to 5 mM, and possesses a capacity for the sensitive determination of other targets.
J-STAGE:
View this article in J-STAGE