Analytical Sciences


Abstract − Analytical Sciences, 28(9), 875 (2012).

CMOS Image Sensor-based Immunodetection by Refractive-Index Change
Jasmine P DEVADHASAN and Sanghyo KIM
Department of Bionanotechnology, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea
A complementary metal oxide semiconductor (CMOS) image sensor is an intriguing technology for the development of a novel biosensor. Indeed, the CMOS image sensor mechanism concerning the detection of the antigen-antibody (Ag-Ab) interaction at the nanoscale has been ambiguous so far. To understand the mechanism, more extensive research has been necessary to achieve point-of-care diagnostic devices. This research has demonstrated a CMOS image sensor-based analysis of cardiovascular disease markers, such as C-reactive protein (CRP) and troponin I, Ag-Ab interactions on indium nanoparticle (InNP) substrates by simple photon count variation. The developed sensor is feasible to detect proteins even at a fg/mL concentration under ordinary room light. Possible mechanisms, such as dielectric constant and refractive-index changes, have been studied and proposed. A dramatic change in the refractive index after protein adsorption on an InNP substrate was observed to be a predominant factor involved in CMOS image sensor-based immunoassay.